ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lelttr GIF version

Theorem lelttr 7164
Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 23-May-1999.)
Assertion
Ref Expression
lelttr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))

Proof of Theorem lelttr
StepHypRef Expression
1 simprl 491 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐴𝐵)
2 simpl1 918 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐴 ∈ ℝ)
3 simpl2 919 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ)
4 lenlt 7152 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
52, 3, 4syl2anc 397 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
61, 5mpbid 139 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → ¬ 𝐵 < 𝐴)
76pm2.21d 559 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐵 < 𝐴𝐴 < 𝐶))
8 idd 21 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐴 < 𝐶𝐴 < 𝐶))
9 simprr 492 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐵 < 𝐶)
10 simpl3 920 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐶 ∈ ℝ)
11 axltwlin 7145 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐶 → (𝐵 < 𝐴𝐴 < 𝐶)))
123, 10, 2, 11syl3anc 1146 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐵 < 𝐶 → (𝐵 < 𝐴𝐴 < 𝐶)))
139, 12mpd 13 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐵 < 𝐴𝐴 < 𝐶))
147, 8, 13mpjaod 648 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐴 < 𝐶)
1514ex 112 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  wb 102  wo 639  w3a 896  wcel 1409   class class class wbr 3791  cr 6945   < clt 7118  cle 7119
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-cnex 7032  ax-resscn 7033  ax-pre-ltwlin 7054
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-xp 4378  df-cnv 4380  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124
This theorem is referenced by:  lelttri  7181  lelttrd  7199  letrp1  7888  ltmul12a  7900  bndndx  8237  uzind  8407  fnn0ind  8412  elfzo0z  9141  fzofzim  9145  elfzodifsumelfzo  9158  flqge  9231  modfzo0difsn  9344  expnlbnd2  9541  caubnd2  9943  mulcn2  10063  cn1lem  10064  climsqz  10085  climsqz2  10086  climcvg1nlem  10098  ltoddhalfle  10204  algcvgblem  10257
  Copyright terms: Public domain W3C validator