![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lelttrdi | GIF version |
Description: If a number is less than another number, and the other number is less than or equal to a third number, the first number is less than the third number. (Contributed by Alexander van der Vekens, 24-Mar-2018.) |
Ref | Expression |
---|---|
lelttrdi.r | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) |
lelttrdi.l | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
lelttrdi | ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lelttrdi.r | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) | |
2 | 1 | simp1d 951 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 2 | adantr 270 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
4 | 1 | simp2d 952 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
5 | 4 | adantr 270 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
6 | 1 | simp3d 953 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
7 | 6 | adantr 270 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐶 ∈ ℝ) |
8 | simpr 108 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
9 | lelttrdi.l | . . . 4 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
10 | 9 | adantr 270 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐵 ≤ 𝐶) |
11 | 3, 5, 7, 8, 10 | ltletrd 7664 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐶) |
12 | 11 | ex 113 | 1 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 < 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∧ w3a 920 ∈ wcel 1434 class class class wbr 3805 ℝcr 7112 < clt 7285 ≤ cle 7286 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-cnex 7199 ax-resscn 7200 ax-pre-ltwlin 7221 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2612 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-br 3806 df-opab 3860 df-xp 4397 df-cnv 4399 df-pnf 7287 df-mnf 7288 df-xr 7289 df-ltxr 7290 df-le 7291 |
This theorem is referenced by: subfzo0 9398 |
Copyright terms: Public domain | W3C validator |