ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lenegcon2 GIF version

Theorem lenegcon2 7708
Description: Contraposition of negative in 'less than or equal to'. (Contributed by NM, 8-Oct-2005.)
Assertion
Ref Expression
lenegcon2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ -𝐵𝐵 ≤ -𝐴))

Proof of Theorem lenegcon2
StepHypRef Expression
1 renegcl 7506 . . 3 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
2 leneg 7706 . . 3 ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → (𝐴 ≤ -𝐵 ↔ --𝐵 ≤ -𝐴))
31, 2sylan2 280 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ -𝐵 ↔ --𝐵 ≤ -𝐴))
4 recn 7238 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
54negnegd 7547 . . . 4 (𝐵 ∈ ℝ → --𝐵 = 𝐵)
65adantl 271 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → --𝐵 = 𝐵)
76breq1d 3815 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (--𝐵 ≤ -𝐴𝐵 ≤ -𝐴))
83, 7bitrd 186 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ -𝐵𝐵 ≤ -𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434   class class class wbr 3805  cr 7112  cle 7286  -cneg 7417
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7199  ax-resscn 7200  ax-1cn 7201  ax-1re 7202  ax-icn 7203  ax-addcl 7204  ax-addrcl 7205  ax-mulcl 7206  ax-addcom 7208  ax-addass 7210  ax-distr 7212  ax-i2m1 7213  ax-0id 7216  ax-rnegex 7217  ax-cnre 7219  ax-pre-ltadd 7224
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-iota 4917  df-fun 4954  df-fv 4960  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-pnf 7287  df-mnf 7288  df-xr 7289  df-ltxr 7290  df-le 7291  df-sub 7418  df-neg 7419
This theorem is referenced by:  lenegcon2d  7765  lemininf  10334
  Copyright terms: Public domain W3C validator