ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lerelxr GIF version

Theorem lerelxr 7140
Description: 'Less than or equal' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
lerelxr ≤ ⊆ (ℝ* × ℝ*)

Proof of Theorem lerelxr
StepHypRef Expression
1 df-le 7124 . 2 ≤ = ((ℝ* × ℝ*) ∖ < )
2 difss 3097 . 2 ((ℝ* × ℝ*) ∖ < ) ⊆ (ℝ* × ℝ*)
31, 2eqsstri 3002 1 ≤ ⊆ (ℝ* × ℝ*)
Colors of variables: wff set class
Syntax hints:  cdif 2941  wss 2944   × cxp 4370  ccnv 4371  *cxr 7117   < clt 7118  cle 7119
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-dif 2947  df-in 2951  df-ss 2958  df-le 7124
This theorem is referenced by:  lerel  7141
  Copyright terms: Public domain W3C validator