ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltabs GIF version

Theorem ltabs 10827
Description: A number which is less than its absolute value is negative. (Contributed by Jim Kingdon, 12-Aug-2021.)
Assertion
Ref Expression
ltabs ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 < 0)

Proof of Theorem ltabs
StepHypRef Expression
1 simpr 109 . 2 (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 𝐴 < 0) → 𝐴 < 0)
2 simpllr 508 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 𝐴 < (abs‘𝐴))
3 simpll 503 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → 𝐴 ∈ ℝ)
43adantr 274 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
5 0red 7735 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 0 ∈ ℝ)
6 simpr 109 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 0 < 𝐴)
75, 4, 6ltled 7849 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 0 ≤ 𝐴)
8 absid 10811 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)
94, 7, 8syl2anc 408 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → (abs‘𝐴) = 𝐴)
102, 9breqtrd 3924 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → 𝐴 < 𝐴)
114ltnrd 7843 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) ∧ 0 < 𝐴) → ¬ 𝐴 < 𝐴)
1210, 11pm2.65da 635 . . 3 (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → ¬ 0 < 𝐴)
13 recn 7721 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
14 abscl 10791 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1513, 14syl 14 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ)
1615ad2antrr 479 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → (abs‘𝐴) ∈ ℝ)
17 simpr 109 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → 0 < (abs‘𝐴))
1816, 17gt0ap0d 8359 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → (abs‘𝐴) # 0)
19 abs00ap 10802 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ 𝐴 # 0))
203, 13, 193syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → ((abs‘𝐴) # 0 ↔ 𝐴 # 0))
2118, 20mpbid 146 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → 𝐴 # 0)
22 0re 7734 . . . . 5 0 ∈ ℝ
23 reaplt 8318 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
243, 22, 23sylancl 409 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
2521, 24mpbid 146 . . 3 (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → (𝐴 < 0 ∨ 0 < 𝐴))
2612, 25ecased 1312 . 2 (((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) ∧ 0 < (abs‘𝐴)) → 𝐴 < 0)
27 axltwlin 7800 . . . . 5 ((𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < (abs‘𝐴) → (𝐴 < 0 ∨ 0 < (abs‘𝐴))))
2822, 27mp3an3 1289 . . . 4 ((𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (𝐴 < (abs‘𝐴) → (𝐴 < 0 ∨ 0 < (abs‘𝐴))))
2915, 28mpdan 417 . . 3 (𝐴 ∈ ℝ → (𝐴 < (abs‘𝐴) → (𝐴 < 0 ∨ 0 < (abs‘𝐴))))
3029imp 123 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (𝐴 < 0 ∨ 0 < (abs‘𝐴)))
311, 26, 30mpjaodan 772 1 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 < 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 682   = wceq 1316  wcel 1465   class class class wbr 3899  cfv 5093  cc 7586  cr 7587  0cc0 7588   < clt 7768  cle 7769   # cap 8311  abscabs 10737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-3 8748  df-4 8749  df-n0 8946  df-z 9023  df-uz 9295  df-rp 9410  df-seqfrec 10187  df-exp 10261  df-cj 10582  df-re 10583  df-im 10584  df-rsqrt 10738  df-abs 10739
This theorem is referenced by:  abslt  10828  absle  10829  maxabslemlub  10947
  Copyright terms: Public domain W3C validator