![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltadd2dd | GIF version |
Description: Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
ltadd2d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltadd2d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd2d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
ltadd2dd | ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | ltadd2d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltadd2d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | ltadd2d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 2, 3, 4 | ltadd2d 7662 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
6 | 1, 5 | mpbid 145 | 1 ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1434 class class class wbr 3805 (class class class)co 5564 ℝcr 7112 + caddc 7116 < clt 7285 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-cnex 7199 ax-resscn 7200 ax-1cn 7201 ax-icn 7203 ax-addcl 7204 ax-addrcl 7205 ax-mulcl 7206 ax-addcom 7208 ax-addass 7210 ax-i2m1 7213 ax-0id 7216 ax-rnegex 7217 ax-pre-ltadd 7224 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2612 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-br 3806 df-opab 3860 df-xp 4397 df-iota 4917 df-fv 4960 df-ov 5567 df-pnf 7287 df-mnf 7288 df-ltxr 7290 |
This theorem is referenced by: zltaddlt1le 9174 rebtwn2zlemstep 9409 rebtwn2z 9411 2tnp1ge0ge0 9453 cvg1nlemcau 10089 resqrexlemdec 10116 |
Copyright terms: Public domain | W3C validator |