ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaddnq GIF version

Theorem ltaddnq 7215
Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Assertion
Ref Expression
ltaddnq ((𝐴Q𝐵Q) → 𝐴 <Q (𝐴 +Q 𝐵))

Proof of Theorem ltaddnq
Dummy variables 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1lt2nq 7214 . . . . . . 7 1Q <Q (1Q +Q 1Q)
2 1nq 7174 . . . . . . . 8 1QQ
3 addclnq 7183 . . . . . . . . 9 ((1QQ ∧ 1QQ) → (1Q +Q 1Q) ∈ Q)
42, 2, 3mp2an 422 . . . . . . . 8 (1Q +Q 1Q) ∈ Q
5 ltmnqg 7209 . . . . . . . 8 ((1QQ ∧ (1Q +Q 1Q) ∈ Q𝐵Q) → (1Q <Q (1Q +Q 1Q) ↔ (𝐵 ·Q 1Q) <Q (𝐵 ·Q (1Q +Q 1Q))))
62, 4, 5mp3an12 1305 . . . . . . 7 (𝐵Q → (1Q <Q (1Q +Q 1Q) ↔ (𝐵 ·Q 1Q) <Q (𝐵 ·Q (1Q +Q 1Q))))
71, 6mpbii 147 . . . . . 6 (𝐵Q → (𝐵 ·Q 1Q) <Q (𝐵 ·Q (1Q +Q 1Q)))
8 mulidnq 7197 . . . . . 6 (𝐵Q → (𝐵 ·Q 1Q) = 𝐵)
9 distrnqg 7195 . . . . . . . 8 ((𝐵Q ∧ 1QQ ∧ 1QQ) → (𝐵 ·Q (1Q +Q 1Q)) = ((𝐵 ·Q 1Q) +Q (𝐵 ·Q 1Q)))
102, 2, 9mp3an23 1307 . . . . . . 7 (𝐵Q → (𝐵 ·Q (1Q +Q 1Q)) = ((𝐵 ·Q 1Q) +Q (𝐵 ·Q 1Q)))
118, 8oveq12d 5792 . . . . . . 7 (𝐵Q → ((𝐵 ·Q 1Q) +Q (𝐵 ·Q 1Q)) = (𝐵 +Q 𝐵))
1210, 11eqtrd 2172 . . . . . 6 (𝐵Q → (𝐵 ·Q (1Q +Q 1Q)) = (𝐵 +Q 𝐵))
137, 8, 123brtr3d 3959 . . . . 5 (𝐵Q𝐵 <Q (𝐵 +Q 𝐵))
1413adantl 275 . . . 4 ((𝐴Q𝐵Q) → 𝐵 <Q (𝐵 +Q 𝐵))
15 simpr 109 . . . . 5 ((𝐴Q𝐵Q) → 𝐵Q)
16 addclnq 7183 . . . . . . 7 ((𝐵Q𝐵Q) → (𝐵 +Q 𝐵) ∈ Q)
1716anidms 394 . . . . . 6 (𝐵Q → (𝐵 +Q 𝐵) ∈ Q)
1817adantl 275 . . . . 5 ((𝐴Q𝐵Q) → (𝐵 +Q 𝐵) ∈ Q)
19 simpl 108 . . . . 5 ((𝐴Q𝐵Q) → 𝐴Q)
20 ltanqg 7208 . . . . 5 ((𝐵Q ∧ (𝐵 +Q 𝐵) ∈ Q𝐴Q) → (𝐵 <Q (𝐵 +Q 𝐵) ↔ (𝐴 +Q 𝐵) <Q (𝐴 +Q (𝐵 +Q 𝐵))))
2115, 18, 19, 20syl3anc 1216 . . . 4 ((𝐴Q𝐵Q) → (𝐵 <Q (𝐵 +Q 𝐵) ↔ (𝐴 +Q 𝐵) <Q (𝐴 +Q (𝐵 +Q 𝐵))))
2214, 21mpbid 146 . . 3 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) <Q (𝐴 +Q (𝐵 +Q 𝐵)))
23 addcomnqg 7189 . . 3 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴))
24 addcomnqg 7189 . . . . 5 ((𝑟Q𝑠Q) → (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟))
2524adantl 275 . . . 4 (((𝐴Q𝐵Q) ∧ (𝑟Q𝑠Q)) → (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟))
26 addassnqg 7190 . . . . 5 ((𝑟Q𝑠Q𝑡Q) → ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡)))
2726adantl 275 . . . 4 (((𝐴Q𝐵Q) ∧ (𝑟Q𝑠Q𝑡Q)) → ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡)))
2819, 15, 15, 25, 27caov12d 5952 . . 3 ((𝐴Q𝐵Q) → (𝐴 +Q (𝐵 +Q 𝐵)) = (𝐵 +Q (𝐴 +Q 𝐵)))
2922, 23, 283brtr3d 3959 . 2 ((𝐴Q𝐵Q) → (𝐵 +Q 𝐴) <Q (𝐵 +Q (𝐴 +Q 𝐵)))
30 addclnq 7183 . . 3 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) ∈ Q)
31 ltanqg 7208 . . 3 ((𝐴Q ∧ (𝐴 +Q 𝐵) ∈ Q𝐵Q) → (𝐴 <Q (𝐴 +Q 𝐵) ↔ (𝐵 +Q 𝐴) <Q (𝐵 +Q (𝐴 +Q 𝐵))))
3219, 30, 15, 31syl3anc 1216 . 2 ((𝐴Q𝐵Q) → (𝐴 <Q (𝐴 +Q 𝐵) ↔ (𝐵 +Q 𝐴) <Q (𝐵 +Q (𝐴 +Q 𝐵))))
3329, 32mpbird 166 1 ((𝐴Q𝐵Q) → 𝐴 <Q (𝐴 +Q 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480   class class class wbr 3929  (class class class)co 5774  Qcnq 7088  1Qc1q 7089   +Q cplq 7090   ·Q cmq 7091   <Q cltq 7093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-ltnqqs 7161
This theorem is referenced by:  ltexnqq  7216  nsmallnqq  7220  subhalfnqq  7222  ltbtwnnqq  7223  prarloclemarch2  7227  ltexprlemm  7408  ltexprlemopl  7409  addcanprleml  7422  addcanprlemu  7423  recexprlemm  7432  cauappcvgprlemm  7453  cauappcvgprlemopl  7454  cauappcvgprlem2  7468  caucvgprlemnkj  7474  caucvgprlemnbj  7475  caucvgprlemm  7476  caucvgprlemopl  7477  caucvgprprlemnjltk  7499  caucvgprprlemopl  7505  suplocexprlemmu  7526
  Copyright terms: Public domain W3C validator