ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaddsubi GIF version

Theorem ltaddsubi 7574
Description: 'Less than' relationship between subtraction and addition. (Contributed by NM, 14-May-1999.)
Hypotheses
Ref Expression
lt2.1 𝐴 ∈ ℝ
lt2.2 𝐵 ∈ ℝ
lt2.3 𝐶 ∈ ℝ
Assertion
Ref Expression
ltaddsubi ((𝐴 + 𝐵) < 𝐶𝐴 < (𝐶𝐵))

Proof of Theorem ltaddsubi
StepHypRef Expression
1 lt2.1 . 2 𝐴 ∈ ℝ
2 lt2.2 . 2 𝐵 ∈ ℝ
3 lt2.3 . 2 𝐶 ∈ ℝ
4 ltaddsub 7504 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶𝐴 < (𝐶𝐵)))
51, 2, 3, 4mp3an 1243 1 ((𝐴 + 𝐵) < 𝐶𝐴 < (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wb 102  wcel 1409   class class class wbr 3791  (class class class)co 5539  cr 6945   + caddc 6949   < clt 7118  cmin 7244
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-addcom 7041  ax-addass 7043  ax-distr 7045  ax-i2m1 7046  ax-0id 7049  ax-rnegex 7050  ax-cnre 7052  ax-pre-ltadd 7057
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-iota 4894  df-fun 4931  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-pnf 7120  df-mnf 7121  df-ltxr 7123  df-sub 7246  df-neg 7247
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator