ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltapig GIF version

Theorem ltapig 6393
Description: Ordering property of addition for positive integers. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
ltapig ((𝐴N𝐵N𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵)))

Proof of Theorem ltapig
StepHypRef Expression
1 pinn 6364 . . . . 5 (𝐴N𝐴 ∈ ω)
2 pinn 6364 . . . . 5 (𝐵N𝐵 ∈ ω)
3 pinn 6364 . . . . 5 (𝐶N𝐶 ∈ ω)
4 nnaord 6045 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
51, 2, 3, 4syl3an 1177 . . . 4 ((𝐴N𝐵N𝐶N) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
653expa 1104 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
7 ltpiord 6374 . . . 4 ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
87adantr 261 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 <N 𝐵𝐴𝐵))
9 addclpi 6382 . . . . . . 7 ((𝐶N𝐴N) → (𝐶 +N 𝐴) ∈ N)
10 addclpi 6382 . . . . . . 7 ((𝐶N𝐵N) → (𝐶 +N 𝐵) ∈ N)
11 ltpiord 6374 . . . . . . 7 (((𝐶 +N 𝐴) ∈ N ∧ (𝐶 +N 𝐵) ∈ N) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵)))
129, 10, 11syl2an 273 . . . . . 6 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵)))
13 addpiord 6371 . . . . . . . 8 ((𝐶N𝐴N) → (𝐶 +N 𝐴) = (𝐶 +𝑜 𝐴))
1413adantr 261 . . . . . . 7 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → (𝐶 +N 𝐴) = (𝐶 +𝑜 𝐴))
15 addpiord 6371 . . . . . . . 8 ((𝐶N𝐵N) → (𝐶 +N 𝐵) = (𝐶 +𝑜 𝐵))
1615adantl 262 . . . . . . 7 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → (𝐶 +N 𝐵) = (𝐶 +𝑜 𝐵))
1714, 16eleq12d 2108 . . . . . 6 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵) ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
1812, 17bitrd 177 . . . . 5 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
1918anandis 526 . . . 4 ((𝐶N ∧ (𝐴N𝐵N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
2019ancoms 255 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
216, 8, 203bitr4d 209 . 2 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵)))
22213impa 1099 1 ((𝐴N𝐵N𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wcel 1393   class class class wbr 3761  ωcom 4276  (class class class)co 5475   +𝑜 coa 5961  Ncnpi 6327   +N cpli 6328   <N clti 6330
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3869  ax-sep 3872  ax-nul 3880  ax-pow 3924  ax-pr 3941  ax-un 4142  ax-setind 4232  ax-iinf 4274
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2308  df-rex 2309  df-reu 2310  df-rab 2312  df-v 2556  df-sbc 2762  df-csb 2850  df-dif 2917  df-un 2919  df-in 2921  df-ss 2928  df-nul 3222  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3578  df-int 3613  df-iun 3656  df-br 3762  df-opab 3816  df-mpt 3817  df-tr 3852  df-eprel 4023  df-id 4027  df-iord 4075  df-on 4077  df-suc 4080  df-iom 4277  df-xp 4314  df-rel 4315  df-cnv 4316  df-co 4317  df-dm 4318  df-rn 4319  df-res 4320  df-ima 4321  df-iota 4830  df-fun 4867  df-fn 4868  df-f 4869  df-f1 4870  df-fo 4871  df-f1o 4872  df-fv 4873  df-ov 5478  df-oprab 5479  df-mpt2 5480  df-1st 5730  df-2nd 5731  df-recs 5883  df-irdg 5920  df-oadd 5968  df-ni 6359  df-pli 6360  df-lti 6362
This theorem is referenced by:  ltanqg  6455
  Copyright terms: Public domain W3C validator