ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltbtwnnqq GIF version

Theorem ltbtwnnqq 6456
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by Jim Kingdon, 24-Sep-2019.)
Assertion
Ref Expression
ltbtwnnqq (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltbtwnnqq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 6406 . . . . 5 <Q ⊆ (Q × Q)
21brel 4353 . . . 4 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
32simpld 105 . . 3 (𝐴 <Q 𝐵𝐴Q)
4 ltexnqi 6450 . . 3 (𝐴 <Q 𝐵 → ∃𝑦Q (𝐴 +Q 𝑦) = 𝐵)
5 nsmallnq 6454 . . . . . 6 (𝑦Q → ∃𝑧 𝑧 <Q 𝑦)
61brel 4353 . . . . . . . . . . . . . . 15 (𝑧 <Q 𝑦 → (𝑧Q𝑦Q))
76simpld 105 . . . . . . . . . . . . . 14 (𝑧 <Q 𝑦𝑧Q)
8 ltaddnq 6448 . . . . . . . . . . . . . 14 ((𝐴Q𝑧Q) → 𝐴 <Q (𝐴 +Q 𝑧))
97, 8sylan2 270 . . . . . . . . . . . . 13 ((𝐴Q𝑧 <Q 𝑦) → 𝐴 <Q (𝐴 +Q 𝑧))
109ancoms 255 . . . . . . . . . . . 12 ((𝑧 <Q 𝑦𝐴Q) → 𝐴 <Q (𝐴 +Q 𝑧))
1110adantr 261 . . . . . . . . . . 11 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → 𝐴 <Q (𝐴 +Q 𝑧))
12 ltanqi 6443 . . . . . . . . . . . . 13 ((𝑧 <Q 𝑦𝐴Q) → (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦))
1312adantr 261 . . . . . . . . . . . 12 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦))
14 breq2 3764 . . . . . . . . . . . . 13 ((𝐴 +Q 𝑦) = 𝐵 → ((𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦) ↔ (𝐴 +Q 𝑧) <Q 𝐵))
1514adantl 262 . . . . . . . . . . . 12 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → ((𝐴 +Q 𝑧) <Q (𝐴 +Q 𝑦) ↔ (𝐴 +Q 𝑧) <Q 𝐵))
1613, 15mpbid 135 . . . . . . . . . . 11 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴 +Q 𝑧) <Q 𝐵)
17 addclnq 6416 . . . . . . . . . . . . . . 15 ((𝐴Q𝑧Q) → (𝐴 +Q 𝑧) ∈ Q)
187, 17sylan2 270 . . . . . . . . . . . . . 14 ((𝐴Q𝑧 <Q 𝑦) → (𝐴 +Q 𝑧) ∈ Q)
1918ancoms 255 . . . . . . . . . . . . 13 ((𝑧 <Q 𝑦𝐴Q) → (𝐴 +Q 𝑧) ∈ Q)
2019adantr 261 . . . . . . . . . . . 12 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝐴 +Q 𝑧) ∈ Q)
21 breq2 3764 . . . . . . . . . . . . . 14 (𝑥 = (𝐴 +Q 𝑧) → (𝐴 <Q 𝑥𝐴 <Q (𝐴 +Q 𝑧)))
22 breq1 3763 . . . . . . . . . . . . . 14 (𝑥 = (𝐴 +Q 𝑧) → (𝑥 <Q 𝐵 ↔ (𝐴 +Q 𝑧) <Q 𝐵))
2321, 22anbi12d 442 . . . . . . . . . . . . 13 (𝑥 = (𝐴 +Q 𝑧) → ((𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ (𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵)))
2423adantl 262 . . . . . . . . . . . 12 ((((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) ∧ 𝑥 = (𝐴 +Q 𝑧)) → ((𝐴 <Q 𝑥𝑥 <Q 𝐵) ↔ (𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵)))
2520, 24rspcedv 2657 . . . . . . . . . . 11 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → ((𝐴 <Q (𝐴 +Q 𝑧) ∧ (𝐴 +Q 𝑧) <Q 𝐵) → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
2611, 16, 25mp2and 409 . . . . . . . . . 10 (((𝑧 <Q 𝑦𝐴Q) ∧ (𝐴 +Q 𝑦) = 𝐵) → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
27263impa 1099 . . . . . . . . 9 ((𝑧 <Q 𝑦𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵) → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
28273coml 1111 . . . . . . . 8 ((𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵𝑧 <Q 𝑦) → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
29283expia 1106 . . . . . . 7 ((𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝑧 <Q 𝑦 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3029exlimdv 1700 . . . . . 6 ((𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (∃𝑧 𝑧 <Q 𝑦 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
315, 30syl5 28 . . . . 5 ((𝐴Q ∧ (𝐴 +Q 𝑦) = 𝐵) → (𝑦Q → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3231impancom 247 . . . 4 ((𝐴Q𝑦Q) → ((𝐴 +Q 𝑦) = 𝐵 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
3332rexlimdva 2430 . . 3 (𝐴Q → (∃𝑦Q (𝐴 +Q 𝑦) = 𝐵 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
343, 4, 33sylc 56 . 2 (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
35 ltsonq 6439 . . . 4 <Q Or Q
3635, 1sotri 4681 . . 3 ((𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝐴 <Q 𝐵)
3736rexlimivw 2426 . 2 (∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵) → 𝐴 <Q 𝐵)
3834, 37impbii 117 1 (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 97  wb 98   = wceq 1243  wex 1381  wcel 1393  wrex 2304   class class class wbr 3760  (class class class)co 5473  Qcnq 6321   +Q cplq 6323   <Q cltq 6326
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3868  ax-sep 3871  ax-nul 3879  ax-pow 3923  ax-pr 3940  ax-un 4141  ax-setind 4230  ax-iinf 4272
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2308  df-rex 2309  df-reu 2310  df-rab 2312  df-v 2556  df-sbc 2762  df-csb 2850  df-dif 2917  df-un 2919  df-in 2921  df-ss 2928  df-nul 3222  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3577  df-int 3612  df-iun 3655  df-br 3761  df-opab 3815  df-mpt 3816  df-tr 3851  df-eprel 4022  df-id 4026  df-po 4029  df-iso 4030  df-iord 4074  df-on 4076  df-suc 4079  df-iom 4275  df-xp 4312  df-rel 4313  df-cnv 4314  df-co 4315  df-dm 4316  df-rn 4317  df-res 4318  df-ima 4319  df-iota 4828  df-fun 4865  df-fn 4866  df-f 4867  df-f1 4868  df-fo 4869  df-f1o 4870  df-fv 4871  df-ov 5476  df-oprab 5477  df-mpt2 5478  df-1st 5728  df-2nd 5729  df-recs 5881  df-irdg 5918  df-1o 5962  df-oadd 5966  df-omul 5967  df-er 6065  df-ec 6067  df-qs 6071  df-ni 6345  df-pli 6346  df-mi 6347  df-lti 6348  df-plpq 6385  df-mpq 6386  df-enq 6388  df-nqqs 6389  df-plqqs 6390  df-mqqs 6391  df-1nqqs 6392  df-rq 6393  df-ltnqqs 6394
This theorem is referenced by:  ltbtwnnq  6457  nqprrnd  6584  appdivnq  6604  ltnqpr  6634  ltnqpri  6635  recexprlemopl  6666  recexprlemopu  6668  cauappcvgprlemopl  6687  cauappcvgprlemopu  6689  cauappcvgprlem2  6701  caucvgprlemopl  6710  caucvgprlemopu  6712  caucvgprlem2  6721
  Copyright terms: Public domain W3C validator