ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltdcnq GIF version

Theorem ltdcnq 7173
Description: Less-than for positive fractions is decidable. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
ltdcnq ((𝐴Q𝐵Q) → DECID 𝐴 <Q 𝐵)

Proof of Theorem ltdcnq
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7154 . . . 4 (𝐴Q → ∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ))
2 nqpi 7154 . . . 4 (𝐵Q → ∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q ))
31, 2anim12i 336 . . 3 ((𝐴Q𝐵Q) → (∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )))
4 ee4anv 1886 . . 3 (∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) ↔ (∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )))
53, 4sylibr 133 . 2 ((𝐴Q𝐵Q) → ∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )))
6 mulclpi 7104 . . . . . . . . 9 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) ∈ N)
7 mulclpi 7104 . . . . . . . . 9 ((𝑦N𝑧N) → (𝑦 ·N 𝑧) ∈ N)
8 ltdcpi 7099 . . . . . . . . 9 (((𝑥 ·N 𝑤) ∈ N ∧ (𝑦 ·N 𝑧) ∈ N) → DECID (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧))
96, 7, 8syl2an 287 . . . . . . . 8 (((𝑥N𝑤N) ∧ (𝑦N𝑧N)) → DECID (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧))
109an42s 563 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → DECID (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧))
11 ordpipqqs 7150 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧)))
1211dcbid 808 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (DECID [⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~QDECID (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧)))
1310, 12mpbird 166 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → DECID [⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q )
1413ad2ant2r 500 . . . . 5 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) → DECID [⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q )
15 breq12 3904 . . . . . . 7 ((𝐴 = [⟨𝑥, 𝑦⟩] ~Q𝐵 = [⟨𝑧, 𝑤⟩] ~Q ) → (𝐴 <Q 𝐵 ↔ [⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ))
1615ad2ant2l 499 . . . . . 6 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) → (𝐴 <Q 𝐵 ↔ [⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ))
1716dcbid 808 . . . . 5 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) → (DECID 𝐴 <Q 𝐵DECID [⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ))
1814, 17mpbird 166 . . . 4 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) → DECID 𝐴 <Q 𝐵)
1918exlimivv 1852 . . 3 (∃𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) → DECID 𝐴 <Q 𝐵)
2019exlimivv 1852 . 2 (∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧N𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q )) → DECID 𝐴 <Q 𝐵)
215, 20syl 14 1 ((𝐴Q𝐵Q) → DECID 𝐴 <Q 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 804   = wceq 1316  wex 1453  wcel 1465  cop 3500   class class class wbr 3899  (class class class)co 5742  [cec 6395  Ncnpi 7048   ·N cmi 7050   <N clti 7051   ~Q ceq 7055  Qcnq 7056   <Q cltq 7061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-eprel 4181  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-oadd 6285  df-omul 6286  df-er 6397  df-ec 6399  df-qs 6403  df-ni 7080  df-mi 7082  df-lti 7083  df-enq 7123  df-nqqs 7124  df-ltnqqs 7129
This theorem is referenced by:  distrlem4prl  7360  distrlem4pru  7361
  Copyright terms: Public domain W3C validator