![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltdiv23d | GIF version |
Description: Swap denominator with other side of 'less than'. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltdiv23d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltdiv23d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
ltdiv23d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
ltdiv23d.4 | ⊢ (𝜑 → (𝐴 / 𝐵) < 𝐶) |
Ref | Expression |
---|---|
ltdiv23d | ⊢ (𝜑 → (𝐴 / 𝐶) < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltdiv23d.4 | . 2 ⊢ (𝜑 → (𝐴 / 𝐵) < 𝐶) | |
2 | ltdiv23d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltdiv23d.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
4 | 3 | rpregt0d 8861 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) |
5 | ltdiv23d.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
6 | 5 | rpregt0d 8861 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 < 𝐶)) |
7 | ltdiv23 8037 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) | |
8 | 2, 4, 6, 7 | syl3anc 1170 | . 2 ⊢ (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) |
9 | 1, 8 | mpbid 145 | 1 ⊢ (𝜑 → (𝐴 / 𝐶) < 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∈ wcel 1434 class class class wbr 3793 (class class class)co 5543 ℝcr 7042 0cc0 7043 < clt 7215 / cdiv 7827 ℝ+crp 8815 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-setind 4288 ax-cnex 7129 ax-resscn 7130 ax-1cn 7131 ax-1re 7132 ax-icn 7133 ax-addcl 7134 ax-addrcl 7135 ax-mulcl 7136 ax-mulrcl 7137 ax-addcom 7138 ax-mulcom 7139 ax-addass 7140 ax-mulass 7141 ax-distr 7142 ax-i2m1 7143 ax-0lt1 7144 ax-1rid 7145 ax-0id 7146 ax-rnegex 7147 ax-precex 7148 ax-cnre 7149 ax-pre-ltirr 7150 ax-pre-ltwlin 7151 ax-pre-lttrn 7152 ax-pre-apti 7153 ax-pre-ltadd 7154 ax-pre-mulgt0 7155 ax-pre-mulext 7156 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-reu 2356 df-rmo 2357 df-rab 2358 df-v 2604 df-sbc 2817 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-br 3794 df-opab 3848 df-id 4056 df-po 4059 df-iso 4060 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-iota 4897 df-fun 4934 df-fv 4940 df-riota 5499 df-ov 5546 df-oprab 5547 df-mpt2 5548 df-pnf 7217 df-mnf 7218 df-xr 7219 df-ltxr 7220 df-le 7221 df-sub 7348 df-neg 7349 df-reap 7742 df-ap 7749 df-div 7828 df-rp 8816 |
This theorem is referenced by: resqrexlemga 10047 |
Copyright terms: Public domain | W3C validator |