ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexpri GIF version

Theorem ltexpri 6769
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
Assertion
Ref Expression
ltexpri (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexpri
Dummy variables 𝑦 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 107 . . . . . . . 8 ((𝑦 = 𝑢𝑧 = 𝑣) → 𝑧 = 𝑣)
21eleq1d 2122 . . . . . . 7 ((𝑦 = 𝑢𝑧 = 𝑣) → (𝑧 ∈ (2nd𝐴) ↔ 𝑣 ∈ (2nd𝐴)))
3 simpl 106 . . . . . . . . 9 ((𝑦 = 𝑢𝑧 = 𝑣) → 𝑦 = 𝑢)
41, 3oveq12d 5558 . . . . . . . 8 ((𝑦 = 𝑢𝑧 = 𝑣) → (𝑧 +Q 𝑦) = (𝑣 +Q 𝑢))
54eleq1d 2122 . . . . . . 7 ((𝑦 = 𝑢𝑧 = 𝑣) → ((𝑧 +Q 𝑦) ∈ (1st𝐵) ↔ (𝑣 +Q 𝑢) ∈ (1st𝐵)))
62, 5anbi12d 450 . . . . . 6 ((𝑦 = 𝑢𝑧 = 𝑣) → ((𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵)) ↔ (𝑣 ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑢) ∈ (1st𝐵))))
76cbvexdva 1820 . . . . 5 (𝑦 = 𝑢 → (∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵)) ↔ ∃𝑣(𝑣 ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑢) ∈ (1st𝐵))))
87cbvrabv 2573 . . . 4 {𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))} = {𝑢Q ∣ ∃𝑣(𝑣 ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑢) ∈ (1st𝐵))}
91eleq1d 2122 . . . . . . 7 ((𝑦 = 𝑢𝑧 = 𝑣) → (𝑧 ∈ (1st𝐴) ↔ 𝑣 ∈ (1st𝐴)))
104eleq1d 2122 . . . . . . 7 ((𝑦 = 𝑢𝑧 = 𝑣) → ((𝑧 +Q 𝑦) ∈ (2nd𝐵) ↔ (𝑣 +Q 𝑢) ∈ (2nd𝐵)))
119, 10anbi12d 450 . . . . . 6 ((𝑦 = 𝑢𝑧 = 𝑣) → ((𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵)) ↔ (𝑣 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑢) ∈ (2nd𝐵))))
1211cbvexdva 1820 . . . . 5 (𝑦 = 𝑢 → (∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵)) ↔ ∃𝑣(𝑣 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑢) ∈ (2nd𝐵))))
1312cbvrabv 2573 . . . 4 {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))} = {𝑢Q ∣ ∃𝑣(𝑣 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑢) ∈ (2nd𝐵))}
148, 13opeq12i 3582 . . 3 ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ = ⟨{𝑢Q ∣ ∃𝑣(𝑣 ∈ (2nd𝐴) ∧ (𝑣 +Q 𝑢) ∈ (1st𝐵))}, {𝑢Q ∣ ∃𝑣(𝑣 ∈ (1st𝐴) ∧ (𝑣 +Q 𝑢) ∈ (2nd𝐵))}⟩
1514ltexprlempr 6764 . 2 (𝐴<P 𝐵 → ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ ∈ P)
1614ltexprlemfl 6765 . . . 4 (𝐴<P 𝐵 → (1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) ⊆ (1st𝐵))
1714ltexprlemrl 6766 . . . 4 (𝐴<P 𝐵 → (1st𝐵) ⊆ (1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)))
1816, 17eqssd 2990 . . 3 (𝐴<P 𝐵 → (1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (1st𝐵))
1914ltexprlemfu 6767 . . . 4 (𝐴<P 𝐵 → (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) ⊆ (2nd𝐵))
2014ltexprlemru 6768 . . . 4 (𝐴<P 𝐵 → (2nd𝐵) ⊆ (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)))
2119, 20eqssd 2990 . . 3 (𝐴<P 𝐵 → (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (2nd𝐵))
22 ltrelpr 6661 . . . . . . 7 <P ⊆ (P × P)
2322brel 4420 . . . . . 6 (𝐴<P 𝐵 → (𝐴P𝐵P))
2423simpld 109 . . . . 5 (𝐴<P 𝐵𝐴P)
25 addclpr 6693 . . . . 5 ((𝐴P ∧ ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ ∈ P) → (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) ∈ P)
2624, 15, 25syl2anc 397 . . . 4 (𝐴<P 𝐵 → (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) ∈ P)
2723simprd 111 . . . 4 (𝐴<P 𝐵𝐵P)
28 preqlu 6628 . . . 4 (((𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) ∈ P𝐵P) → ((𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵 ↔ ((1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (1st𝐵) ∧ (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (2nd𝐵))))
2926, 27, 28syl2anc 397 . . 3 (𝐴<P 𝐵 → ((𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵 ↔ ((1st ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (1st𝐵) ∧ (2nd ‘(𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩)) = (2nd𝐵))))
3018, 21, 29mpbir2and 862 . 2 (𝐴<P 𝐵 → (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵)
31 oveq2 5548 . . . 4 (𝑥 = ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ → (𝐴 +P 𝑥) = (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩))
3231eqeq1d 2064 . . 3 (𝑥 = ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ → ((𝐴 +P 𝑥) = 𝐵 ↔ (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵))
3332rspcev 2673 . 2 ((⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩ ∈ P ∧ (𝐴 +P ⟨{𝑦Q ∣ ∃𝑧(𝑧 ∈ (2nd𝐴) ∧ (𝑧 +Q 𝑦) ∈ (1st𝐵))}, {𝑦Q ∣ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑦) ∈ (2nd𝐵))}⟩) = 𝐵) → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
3415, 30, 33syl2anc 397 1 (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wex 1397  wcel 1409  wrex 2324  {crab 2327  cop 3406   class class class wbr 3792  cfv 4930  (class class class)co 5540  1st c1st 5793  2nd c2nd 5794  Qcnq 6436   +Q cplq 6438  Pcnp 6447   +P cpp 6449  <P cltp 6451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-iplp 6624  df-iltp 6626
This theorem is referenced by:  lteupri  6773  ltaprlem  6774  ltaprg  6775  ltmprr  6798  recexgt0sr  6916  mulgt0sr  6920
  Copyright terms: Public domain W3C validator