Step | Hyp | Ref
| Expression |
1 | | ltrelpr 6488 |
. . . . . 6
⊢
<P ⊆ (P ×
P) |
2 | 1 | brel 4335 |
. . . . 5
⊢ (A<P B → (A
∈ P ∧ B ∈ P)) |
3 | 2 | simpld 105 |
. . . 4
⊢ (A<P B → A ∈ P) |
4 | | ltexprlem.1 |
. . . . 5
⊢ 𝐶 = 〈{x ∈
Q ∣ ∃y(y ∈ (2nd ‘A) ∧ (y +Q x) ∈
(1st ‘B))}, {x ∈
Q ∣ ∃y(y ∈ (1st ‘A) ∧ (y +Q x) ∈
(2nd ‘B))}〉 |
5 | 4 | ltexprlempr 6582 |
. . . 4
⊢ (A<P B → 𝐶 ∈
P) |
6 | | df-iplp 6451 |
. . . . 5
⊢
+P = (z ∈ P, y ∈
P ↦ 〈{f ∈ Q ∣ ∃g ∈ Q ∃ℎ
∈ Q (g ∈
(1st ‘z) ∧ ℎ
∈ (1st ‘y) ∧ f = (g
+Q ℎ))}, {f
∈ Q ∣ ∃g ∈ Q ∃ℎ
∈ Q (g ∈
(2nd ‘z) ∧ ℎ
∈ (2nd ‘y) ∧ f = (g
+Q ℎ))}〉) |
7 | | addclnq 6359 |
. . . . 5
⊢
((g ∈ Q ∧ ℎ
∈ Q) → (g +Q ℎ) ∈
Q) |
8 | 6, 7 | genpelvl 6495 |
. . . 4
⊢
((A ∈ P ∧ 𝐶 ∈
P) → (z ∈ (1st ‘(A +P 𝐶)) ↔ ∃w ∈ (1st ‘A)∃u ∈
(1st ‘𝐶)z =
(w +Q u))) |
9 | 3, 5, 8 | syl2anc 391 |
. . 3
⊢ (A<P B → (z
∈ (1st ‘(A +P 𝐶)) ↔ ∃w ∈ (1st ‘A)∃u ∈
(1st ‘𝐶)z =
(w +Q u))) |
10 | | simprr 484 |
. . . . . 6
⊢
((A<P
B ∧
((w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶)) ∧
z = (w
+Q u))) →
z = (w
+Q u)) |
11 | 4 | ltexprlemell 6572 |
. . . . . . . . . . 11
⊢ (u ∈
(1st ‘𝐶)
↔ (u ∈ Q ∧ ∃y(y ∈ (2nd ‘A) ∧ (y +Q u) ∈
(1st ‘B)))) |
12 | 11 | biimpi 113 |
. . . . . . . . . 10
⊢ (u ∈
(1st ‘𝐶)
→ (u ∈ Q ∧ ∃y(y ∈ (2nd ‘A) ∧ (y +Q u) ∈
(1st ‘B)))) |
13 | 12 | ad2antlr 458 |
. . . . . . . . 9
⊢
(((w ∈ (1st ‘A) ∧ u ∈
(1st ‘𝐶))
∧ z =
(w +Q u)) → (u
∈ Q ∧ ∃y(y ∈ (2nd ‘A) ∧ (y +Q u) ∈
(1st ‘B)))) |
14 | 13 | adantl 262 |
. . . . . . . 8
⊢
((A<P
B ∧
((w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶)) ∧
z = (w
+Q u))) →
(u ∈
Q ∧ ∃y(y ∈
(2nd ‘A) ∧ (y
+Q u) ∈ (1st ‘B)))) |
15 | 14 | simprd 107 |
. . . . . . 7
⊢
((A<P
B ∧
((w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶)) ∧
z = (w
+Q u))) →
∃y(y ∈ (2nd ‘A) ∧ (y +Q u) ∈
(1st ‘B))) |
16 | | prop 6458 |
. . . . . . . . . . . . . 14
⊢ (A ∈
P → 〈(1st ‘A), (2nd ‘A)〉 ∈
P) |
17 | 3, 16 | syl 14 |
. . . . . . . . . . . . 13
⊢ (A<P B → 〈(1st ‘A), (2nd ‘A)〉 ∈
P) |
18 | | prltlu 6470 |
. . . . . . . . . . . . 13
⊢
((〈(1st ‘A),
(2nd ‘A)〉 ∈ P ∧ w ∈ (1st ‘A) ∧ y ∈
(2nd ‘A)) → w <Q y) |
19 | 17, 18 | syl3an1 1167 |
. . . . . . . . . . . 12
⊢
((A<P
B ∧
w ∈
(1st ‘A) ∧ y ∈ (2nd ‘A)) → w
<Q y) |
20 | 19 | 3adant2r 1129 |
. . . . . . . . . . 11
⊢
((A<P
B ∧
(w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶)) ∧
y ∈
(2nd ‘A)) → w <Q y) |
21 | 20 | 3adant2r 1129 |
. . . . . . . . . 10
⊢
((A<P
B ∧
((w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶)) ∧
z = (w
+Q u)) ∧ y ∈ (2nd ‘A)) → w
<Q y) |
22 | 21 | 3adant3r 1131 |
. . . . . . . . 9
⊢
((A<P
B ∧
((w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶)) ∧
z = (w
+Q u)) ∧ (y ∈ (2nd ‘A) ∧ (y +Q u) ∈
(1st ‘B))) → w <Q y) |
23 | | ltanqg 6384 |
. . . . . . . . . . . 12
⊢
((f ∈ Q ∧ g ∈ Q ∧ ℎ
∈ Q) → (f <Q g ↔ (ℎ +Q f) <Q (ℎ +Q g))) |
24 | 23 | adantl 262 |
. . . . . . . . . . 11
⊢
(((A<P
B ∧
((w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶)) ∧
z = (w
+Q u)) ∧ (y ∈ (2nd ‘A) ∧ (y +Q u) ∈
(1st ‘B))) ∧ (f ∈ Q ∧ g ∈ Q ∧ ℎ
∈ Q)) → (f <Q g ↔ (ℎ +Q f) <Q (ℎ +Q g))) |
25 | | ltrelnq 6349 |
. . . . . . . . . . . . . 14
⊢
<Q ⊆ (Q ×
Q) |
26 | 25 | brel 4335 |
. . . . . . . . . . . . 13
⊢ (w <Q y → (w
∈ Q ∧ y ∈ Q)) |
27 | 22, 26 | syl 14 |
. . . . . . . . . . . 12
⊢
((A<P
B ∧
((w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶)) ∧
z = (w
+Q u)) ∧ (y ∈ (2nd ‘A) ∧ (y +Q u) ∈
(1st ‘B))) →
(w ∈
Q ∧ y ∈
Q)) |
28 | 27 | simpld 105 |
. . . . . . . . . . 11
⊢
((A<P
B ∧
((w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶)) ∧
z = (w
+Q u)) ∧ (y ∈ (2nd ‘A) ∧ (y +Q u) ∈
(1st ‘B))) → w ∈
Q) |
29 | 27 | simprd 107 |
. . . . . . . . . . 11
⊢
((A<P
B ∧
((w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶)) ∧
z = (w
+Q u)) ∧ (y ∈ (2nd ‘A) ∧ (y +Q u) ∈
(1st ‘B))) → y ∈
Q) |
30 | | prop 6458 |
. . . . . . . . . . . . . . . 16
⊢ (𝐶 ∈ P → 〈(1st
‘𝐶), (2nd
‘𝐶)〉 ∈ P) |
31 | 5, 30 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (A<P B → 〈(1st ‘𝐶), (2nd ‘𝐶)〉 ∈ P) |
32 | | elprnql 6464 |
. . . . . . . . . . . . . . 15
⊢
((〈(1st ‘𝐶), (2nd ‘𝐶)〉 ∈
P ∧ u ∈
(1st ‘𝐶))
→ u ∈ Q) |
33 | 31, 32 | sylan 267 |
. . . . . . . . . . . . . 14
⊢
((A<P
B ∧
u ∈
(1st ‘𝐶))
→ u ∈ Q) |
34 | 33 | adantrl 447 |
. . . . . . . . . . . . 13
⊢
((A<P
B ∧
(w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶))) → u ∈
Q) |
35 | 34 | adantrr 448 |
. . . . . . . . . . . 12
⊢
((A<P
B ∧
((w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶)) ∧
z = (w
+Q u))) →
u ∈
Q) |
36 | 35 | 3adant3 923 |
. . . . . . . . . . 11
⊢
((A<P
B ∧
((w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶)) ∧
z = (w
+Q u)) ∧ (y ∈ (2nd ‘A) ∧ (y +Q u) ∈
(1st ‘B))) → u ∈
Q) |
37 | | addcomnqg 6365 |
. . . . . . . . . . . 12
⊢
((f ∈ Q ∧ g ∈ Q) → (f +Q g) = (g
+Q f)) |
38 | 37 | adantl 262 |
. . . . . . . . . . 11
⊢
(((A<P
B ∧
((w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶)) ∧
z = (w
+Q u)) ∧ (y ∈ (2nd ‘A) ∧ (y +Q u) ∈
(1st ‘B))) ∧ (f ∈ Q ∧ g ∈ Q)) → (f +Q g) = (g
+Q f)) |
39 | 24, 28, 29, 36, 38 | caovord2d 5612 |
. . . . . . . . . 10
⊢
((A<P
B ∧
((w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶)) ∧
z = (w
+Q u)) ∧ (y ∈ (2nd ‘A) ∧ (y +Q u) ∈
(1st ‘B))) →
(w <Q y ↔ (w
+Q u)
<Q (y
+Q u))) |
40 | 2 | simprd 107 |
. . . . . . . . . . . . . 14
⊢ (A<P B → B ∈ P) |
41 | | prop 6458 |
. . . . . . . . . . . . . 14
⊢ (B ∈
P → 〈(1st ‘B), (2nd ‘B)〉 ∈
P) |
42 | 40, 41 | syl 14 |
. . . . . . . . . . . . 13
⊢ (A<P B → 〈(1st ‘B), (2nd ‘B)〉 ∈
P) |
43 | | prcdnql 6467 |
. . . . . . . . . . . . 13
⊢
((〈(1st ‘B),
(2nd ‘B)〉 ∈ P ∧ (y
+Q u) ∈ (1st ‘B)) → ((w
+Q u)
<Q (y
+Q u) →
(w +Q u) ∈
(1st ‘B))) |
44 | 42, 43 | sylan 267 |
. . . . . . . . . . . 12
⊢
((A<P
B ∧
(y +Q u) ∈
(1st ‘B)) →
((w +Q u) <Q (y +Q u) → (w
+Q u) ∈ (1st ‘B))) |
45 | 44 | adantrl 447 |
. . . . . . . . . . 11
⊢
((A<P
B ∧
(y ∈
(2nd ‘A) ∧ (y
+Q u) ∈ (1st ‘B))) → ((w
+Q u)
<Q (y
+Q u) →
(w +Q u) ∈
(1st ‘B))) |
46 | 45 | 3adant2 922 |
. . . . . . . . . 10
⊢
((A<P
B ∧
((w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶)) ∧
z = (w
+Q u)) ∧ (y ∈ (2nd ‘A) ∧ (y +Q u) ∈
(1st ‘B))) →
((w +Q u) <Q (y +Q u) → (w
+Q u) ∈ (1st ‘B))) |
47 | 39, 46 | sylbid 139 |
. . . . . . . . 9
⊢
((A<P
B ∧
((w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶)) ∧
z = (w
+Q u)) ∧ (y ∈ (2nd ‘A) ∧ (y +Q u) ∈
(1st ‘B))) →
(w <Q y → (w
+Q u) ∈ (1st ‘B))) |
48 | 22, 47 | mpd 13 |
. . . . . . . 8
⊢
((A<P
B ∧
((w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶)) ∧
z = (w
+Q u)) ∧ (y ∈ (2nd ‘A) ∧ (y +Q u) ∈
(1st ‘B))) →
(w +Q u) ∈
(1st ‘B)) |
49 | 48 | 3expa 1103 |
. . . . . . 7
⊢
(((A<P
B ∧
((w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶)) ∧
z = (w
+Q u))) ∧ (y ∈ (2nd ‘A) ∧ (y +Q u) ∈
(1st ‘B))) →
(w +Q u) ∈
(1st ‘B)) |
50 | 15, 49 | exlimddv 1775 |
. . . . . 6
⊢
((A<P
B ∧
((w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶)) ∧
z = (w
+Q u))) →
(w +Q u) ∈
(1st ‘B)) |
51 | 10, 50 | eqeltrd 2111 |
. . . . 5
⊢
((A<P
B ∧
((w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶)) ∧
z = (w
+Q u))) →
z ∈
(1st ‘B)) |
52 | 51 | expr 357 |
. . . 4
⊢
((A<P
B ∧
(w ∈
(1st ‘A) ∧ u ∈ (1st ‘𝐶))) → (z = (w
+Q u) →
z ∈
(1st ‘B))) |
53 | 52 | rexlimdvva 2434 |
. . 3
⊢ (A<P B → (∃w ∈ (1st ‘A)∃u ∈
(1st ‘𝐶)z =
(w +Q u) → z
∈ (1st ‘B))) |
54 | 9, 53 | sylbid 139 |
. 2
⊢ (A<P B → (z
∈ (1st ‘(A +P 𝐶)) → z ∈
(1st ‘B))) |
55 | 54 | ssrdv 2945 |
1
⊢ (A<P B → (1st ‘(A +P 𝐶)) ⊆ (1st ‘B)) |