ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltposr GIF version

Theorem ltposr 6876
Description: Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.)
Assertion
Ref Expression
ltposr <R Po R

Proof of Theorem ltposr
Dummy variables 𝑥 𝑦 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 6840 . . . . 5 R = ((P × P) / ~R )
2 id 19 . . . . . . 7 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → [⟨𝑥, 𝑦⟩] ~R = 𝑓)
32, 2breq12d 3802 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R𝑓 <R 𝑓))
43notbid 600 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → (¬ [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ ¬ 𝑓 <R 𝑓))
5 ltsopr 6722 . . . . . . . 8 <P Or P
6 ltrelpr 6631 . . . . . . . 8 <P ⊆ (P × P)
75, 6soirri 4744 . . . . . . 7 ¬ (𝑥 +P 𝑦)<P (𝑥 +P 𝑦)
8 addcomprg 6704 . . . . . . . 8 ((𝑥P𝑦P) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥))
98breq2d 3801 . . . . . . 7 ((𝑥P𝑦P) → ((𝑥 +P 𝑦)<P (𝑥 +P 𝑦) ↔ (𝑥 +P 𝑦)<P (𝑦 +P 𝑥)))
107, 9mtbii 607 . . . . . 6 ((𝑥P𝑦P) → ¬ (𝑥 +P 𝑦)<P (𝑦 +P 𝑥))
11 ltsrprg 6860 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑥P𝑦P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑥 +P 𝑦)<P (𝑦 +P 𝑥)))
1211anidms 383 . . . . . 6 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑥 +P 𝑦)<P (𝑦 +P 𝑥)))
1310, 12mtbird 606 . . . . 5 ((𝑥P𝑦P) → ¬ [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )
141, 4, 13ecoptocl 6221 . . . 4 (𝑓R → ¬ 𝑓 <R 𝑓)
1514adantl 266 . . 3 ((⊤ ∧ 𝑓R) → ¬ 𝑓 <R 𝑓)
16 lttrsr 6875 . . . 4 ((𝑓R𝑔RR) → ((𝑓 <R 𝑔𝑔 <R ) → 𝑓 <R ))
1716adantl 266 . . 3 ((⊤ ∧ (𝑓R𝑔RR)) → ((𝑓 <R 𝑔𝑔 <R ) → 𝑓 <R ))
1815, 17ispod 4066 . 2 (⊤ → <R Po R)
1918trud 1266 1 <R Po R
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  wb 102  w3a 894   = wceq 1257  wtru 1258  wcel 1407  cop 3403   class class class wbr 3789   Po wpo 4056  (class class class)co 5537  [cec 6132  Pcnp 6417   +P cpp 6419  <P cltp 6421   ~R cer 6422  Rcnr 6423   <R cltr 6429
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 552  ax-in2 553  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-13 1418  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-coll 3897  ax-sep 3900  ax-nul 3908  ax-pow 3952  ax-pr 3969  ax-un 4195  ax-setind 4287  ax-iinf 4336
This theorem depends on definitions:  df-bi 114  df-dc 752  df-3or 895  df-3an 896  df-tru 1260  df-fal 1263  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ne 2219  df-ral 2326  df-rex 2327  df-reu 2328  df-rab 2330  df-v 2574  df-sbc 2785  df-csb 2878  df-dif 2945  df-un 2947  df-in 2949  df-ss 2956  df-nul 3250  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-int 3641  df-iun 3684  df-br 3790  df-opab 3844  df-mpt 3845  df-tr 3880  df-eprel 4051  df-id 4055  df-po 4058  df-iso 4059  df-iord 4128  df-on 4130  df-suc 4133  df-iom 4339  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-rn 4381  df-res 4382  df-ima 4383  df-iota 4892  df-fun 4929  df-fn 4930  df-f 4931  df-f1 4932  df-fo 4933  df-f1o 4934  df-fv 4935  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 5985  df-1o 6029  df-2o 6030  df-oadd 6033  df-omul 6034  df-er 6134  df-ec 6136  df-qs 6140  df-ni 6430  df-pli 6431  df-mi 6432  df-lti 6433  df-plpq 6470  df-mpq 6471  df-enq 6473  df-nqqs 6474  df-plqqs 6475  df-mqqs 6476  df-1nqqs 6477  df-rq 6478  df-ltnqqs 6479  df-enq0 6550  df-nq0 6551  df-0nq0 6552  df-plq0 6553  df-mq0 6554  df-inp 6592  df-iplp 6594  df-iltp 6596  df-enr 6839  df-nr 6840  df-ltr 6843
This theorem is referenced by:  ltsosr  6877
  Copyright terms: Public domain W3C validator