ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltposr GIF version

Theorem ltposr 7571
Description: Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.)
Assertion
Ref Expression
ltposr <R Po R

Proof of Theorem ltposr
Dummy variables 𝑥 𝑦 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7535 . . . . 5 R = ((P × P) / ~R )
2 id 19 . . . . . . 7 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → [⟨𝑥, 𝑦⟩] ~R = 𝑓)
32, 2breq12d 3942 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R𝑓 <R 𝑓))
43notbid 656 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → (¬ [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ ¬ 𝑓 <R 𝑓))
5 ltsopr 7404 . . . . . . . 8 <P Or P
6 ltrelpr 7313 . . . . . . . 8 <P ⊆ (P × P)
75, 6soirri 4933 . . . . . . 7 ¬ (𝑥 +P 𝑦)<P (𝑥 +P 𝑦)
8 addcomprg 7386 . . . . . . . 8 ((𝑥P𝑦P) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥))
98breq2d 3941 . . . . . . 7 ((𝑥P𝑦P) → ((𝑥 +P 𝑦)<P (𝑥 +P 𝑦) ↔ (𝑥 +P 𝑦)<P (𝑦 +P 𝑥)))
107, 9mtbii 663 . . . . . 6 ((𝑥P𝑦P) → ¬ (𝑥 +P 𝑦)<P (𝑦 +P 𝑥))
11 ltsrprg 7555 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑥P𝑦P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑥 +P 𝑦)<P (𝑦 +P 𝑥)))
1211anidms 394 . . . . . 6 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R ↔ (𝑥 +P 𝑦)<P (𝑦 +P 𝑥)))
1310, 12mtbird 662 . . . . 5 ((𝑥P𝑦P) → ¬ [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑥, 𝑦⟩] ~R )
141, 4, 13ecoptocl 6516 . . . 4 (𝑓R → ¬ 𝑓 <R 𝑓)
1514adantl 275 . . 3 ((⊤ ∧ 𝑓R) → ¬ 𝑓 <R 𝑓)
16 lttrsr 7570 . . . 4 ((𝑓R𝑔RR) → ((𝑓 <R 𝑔𝑔 <R ) → 𝑓 <R ))
1716adantl 275 . . 3 ((⊤ ∧ (𝑓R𝑔RR)) → ((𝑓 <R 𝑔𝑔 <R ) → 𝑓 <R ))
1815, 17ispod 4226 . 2 (⊤ → <R Po R)
1918mptru 1340 1 <R Po R
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wtru 1332  wcel 1480  cop 3530   class class class wbr 3929   Po wpo 4216  (class class class)co 5774  [cec 6427  Pcnp 7099   +P cpp 7101  <P cltp 7103   ~R cer 7104  Rcnr 7105   <R cltr 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-iplp 7276  df-iltp 7278  df-enr 7534  df-nr 7535  df-ltr 7538
This theorem is referenced by:  ltsosr  7572
  Copyright terms: Public domain W3C validator