Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelxr GIF version

Theorem ltrelxr 7240
 Description: 'Less than' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltrelxr < ⊆ (ℝ* × ℝ*)

Proof of Theorem ltrelxr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltxr 7220 . 2 < = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
2 df-3an 922 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦))
32opabbii 3853 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦)}
4 opabssxp 4440 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦)} ⊆ (ℝ × ℝ)
53, 4eqsstri 3030 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ⊆ (ℝ × ℝ)
6 rexpssxrxp 7225 . . . 4 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
75, 6sstri 3009 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ⊆ (ℝ* × ℝ*)
8 ressxr 7224 . . . . . 6 ℝ ⊆ ℝ*
9 snsspr2 3542 . . . . . . 7 {-∞} ⊆ {+∞, -∞}
10 ssun2 3137 . . . . . . . 8 {+∞, -∞} ⊆ (ℝ ∪ {+∞, -∞})
11 df-xr 7219 . . . . . . . 8 * = (ℝ ∪ {+∞, -∞})
1210, 11sseqtr4i 3033 . . . . . . 7 {+∞, -∞} ⊆ ℝ*
139, 12sstri 3009 . . . . . 6 {-∞} ⊆ ℝ*
148, 13unssi 3148 . . . . 5 (ℝ ∪ {-∞}) ⊆ ℝ*
15 snsspr1 3541 . . . . . 6 {+∞} ⊆ {+∞, -∞}
1615, 12sstri 3009 . . . . 5 {+∞} ⊆ ℝ*
17 xpss12 4473 . . . . 5 (((ℝ ∪ {-∞}) ⊆ ℝ* ∧ {+∞} ⊆ ℝ*) → ((ℝ ∪ {-∞}) × {+∞}) ⊆ (ℝ* × ℝ*))
1814, 16, 17mp2an 417 . . . 4 ((ℝ ∪ {-∞}) × {+∞}) ⊆ (ℝ* × ℝ*)
19 xpss12 4473 . . . . 5 (({-∞} ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → ({-∞} × ℝ) ⊆ (ℝ* × ℝ*))
2013, 8, 19mp2an 417 . . . 4 ({-∞} × ℝ) ⊆ (ℝ* × ℝ*)
2118, 20unssi 3148 . . 3 (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)) ⊆ (ℝ* × ℝ*)
227, 21unssi 3148 . 2 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))) ⊆ (ℝ* × ℝ*)
231, 22eqsstri 3030 1 < ⊆ (ℝ* × ℝ*)
 Colors of variables: wff set class Syntax hints:   ∧ wa 102   ∧ w3a 920   ∈ wcel 1434   ∪ cun 2972   ⊆ wss 2974  {csn 3406  {cpr 3407   class class class wbr 3793  {copab 3846   × cxp 4369  ℝcr 7042   <ℝ cltrr 7047  +∞cpnf 7212  -∞cmnf 7213  ℝ*cxr 7214   < clt 7215 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pr 3413  df-opab 3848  df-xp 4377  df-xr 7219  df-ltxr 7220 This theorem is referenced by:  ltrel  7241
 Copyright terms: Public domain W3C validator