ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrennb GIF version

Theorem ltrennb 6988
Description: Ordering of natural numbers with <N or <. (Contributed by Jim Kingdon, 13-Jul-2021.)
Assertion
Ref Expression
ltrennb ((𝐽N𝐾N) → (𝐽 <N 𝐾 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
Distinct variable groups:   𝐽,𝑙   𝑢,𝐽   𝐾,𝑙   𝑢,𝐾

Proof of Theorem ltrennb
StepHypRef Expression
1 ltnnnq 6579 . . 3 ((𝐽N𝐾N) → (𝐽 <N 𝐾 ↔ [⟨𝐽, 1𝑜⟩] ~Q <Q [⟨𝐾, 1𝑜⟩] ~Q ))
2 nnnq 6578 . . . . 5 (𝐽N → [⟨𝐽, 1𝑜⟩] ~QQ)
32adantr 265 . . . 4 ((𝐽N𝐾N) → [⟨𝐽, 1𝑜⟩] ~QQ)
4 nnnq 6578 . . . . 5 (𝐾N → [⟨𝐾, 1𝑜⟩] ~QQ)
54adantl 266 . . . 4 ((𝐽N𝐾N) → [⟨𝐾, 1𝑜⟩] ~QQ)
6 ltnqpr 6749 . . . 4 (([⟨𝐽, 1𝑜⟩] ~QQ ∧ [⟨𝐾, 1𝑜⟩] ~QQ) → ([⟨𝐽, 1𝑜⟩] ~Q <Q [⟨𝐾, 1𝑜⟩] ~Q ↔ ⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩))
73, 5, 6syl2anc 397 . . 3 ((𝐽N𝐾N) → ([⟨𝐽, 1𝑜⟩] ~Q <Q [⟨𝐾, 1𝑜⟩] ~Q ↔ ⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩))
8 nqprlu 6703 . . . . 5 ([⟨𝐽, 1𝑜⟩] ~QQ → ⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ ∈ P)
93, 8syl 14 . . . 4 ((𝐽N𝐾N) → ⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ ∈ P)
10 nqprlu 6703 . . . . 5 ([⟨𝐾, 1𝑜⟩] ~QQ → ⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ ∈ P)
115, 10syl 14 . . . 4 ((𝐽N𝐾N) → ⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ ∈ P)
12 prsrlt 6929 . . . 4 ((⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ ∈ P ∧ ⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ ∈ P) → (⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ ↔ [⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R <R [⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
139, 11, 12syl2anc 397 . . 3 ((𝐽N𝐾N) → (⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ ↔ [⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R <R [⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
141, 7, 133bitrd 207 . 2 ((𝐽N𝐾N) → (𝐽 <N 𝐾 ↔ [⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R <R [⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
15 ltresr 6973 . 2 (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ↔ [⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R <R [⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
1614, 15syl6bbr 191 1 ((𝐽N𝐾N) → (𝐽 <N 𝐾 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wcel 1409  {cab 2042  cop 3406   class class class wbr 3792  (class class class)co 5540  1𝑜c1o 6025  [cec 6135  Ncnpi 6428   <N clti 6431   ~Q ceq 6435  Qcnq 6436   <Q cltq 6441  Pcnp 6447  1Pc1p 6448   +P cpp 6449  <P cltp 6451   ~R cer 6452  0Rc0r 6454   <R cltr 6459   < cltrr 6951
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-r 6957  df-lt 6960
This theorem is referenced by:  ltrenn  6989  axcaucvglemres  7031
  Copyright terms: Public domain W3C validator