ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsopi GIF version

Theorem ltsopi 6475
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
ltsopi <N Or N

Proof of Theorem ltsopi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elirrv 4299 . . . . . 6 ¬ 𝑥𝑥
2 ltpiord 6474 . . . . . . 7 ((𝑥N𝑥N) → (𝑥 <N 𝑥𝑥𝑥))
32anidms 383 . . . . . 6 (𝑥N → (𝑥 <N 𝑥𝑥𝑥))
41, 3mtbiri 610 . . . . 5 (𝑥N → ¬ 𝑥 <N 𝑥)
54adantl 266 . . . 4 ((⊤ ∧ 𝑥N) → ¬ 𝑥 <N 𝑥)
6 pion 6465 . . . . . . . 8 (𝑧N𝑧 ∈ On)
7 ontr1 4153 . . . . . . . 8 (𝑧 ∈ On → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
86, 7syl 14 . . . . . . 7 (𝑧N → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
983ad2ant3 938 . . . . . 6 ((𝑥N𝑦N𝑧N) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
10 ltpiord 6474 . . . . . . . 8 ((𝑥N𝑦N) → (𝑥 <N 𝑦𝑥𝑦))
11103adant3 935 . . . . . . 7 ((𝑥N𝑦N𝑧N) → (𝑥 <N 𝑦𝑥𝑦))
12 ltpiord 6474 . . . . . . . 8 ((𝑦N𝑧N) → (𝑦 <N 𝑧𝑦𝑧))
13123adant1 933 . . . . . . 7 ((𝑥N𝑦N𝑧N) → (𝑦 <N 𝑧𝑦𝑧))
1411, 13anbi12d 450 . . . . . 6 ((𝑥N𝑦N𝑧N) → ((𝑥 <N 𝑦𝑦 <N 𝑧) ↔ (𝑥𝑦𝑦𝑧)))
15 ltpiord 6474 . . . . . . 7 ((𝑥N𝑧N) → (𝑥 <N 𝑧𝑥𝑧))
16153adant2 934 . . . . . 6 ((𝑥N𝑦N𝑧N) → (𝑥 <N 𝑧𝑥𝑧))
179, 14, 163imtr4d 196 . . . . 5 ((𝑥N𝑦N𝑧N) → ((𝑥 <N 𝑦𝑦 <N 𝑧) → 𝑥 <N 𝑧))
1817adantl 266 . . . 4 ((⊤ ∧ (𝑥N𝑦N𝑧N)) → ((𝑥 <N 𝑦𝑦 <N 𝑧) → 𝑥 <N 𝑧))
195, 18ispod 4068 . . 3 (⊤ → <N Po N)
20 pinn 6464 . . . . . 6 (𝑥N𝑥 ∈ ω)
21 pinn 6464 . . . . . 6 (𝑦N𝑦 ∈ ω)
22 nntri3or 6102 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2320, 21, 22syl2an 277 . . . . 5 ((𝑥N𝑦N) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
24 biidd 165 . . . . . 6 ((𝑥N𝑦N) → (𝑥 = 𝑦𝑥 = 𝑦))
25 ltpiord 6474 . . . . . . 7 ((𝑦N𝑥N) → (𝑦 <N 𝑥𝑦𝑥))
2625ancoms 259 . . . . . 6 ((𝑥N𝑦N) → (𝑦 <N 𝑥𝑦𝑥))
2710, 24, 263orbi123d 1217 . . . . 5 ((𝑥N𝑦N) → ((𝑥 <N 𝑦𝑥 = 𝑦𝑦 <N 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
2823, 27mpbird 160 . . . 4 ((𝑥N𝑦N) → (𝑥 <N 𝑦𝑥 = 𝑦𝑦 <N 𝑥))
2928adantl 266 . . 3 ((⊤ ∧ (𝑥N𝑦N)) → (𝑥 <N 𝑦𝑥 = 𝑦𝑦 <N 𝑥))
3019, 29issod 4083 . 2 (⊤ → <N Or N)
3130trud 1268 1 <N Or N
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  wb 102  w3o 895  w3a 896  wtru 1260  wcel 1409   class class class wbr 3791   Or wor 4059  Oncon0 4127  ωcom 4340  Ncnpi 6427   <N clti 6430
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338
This theorem depends on definitions:  df-bi 114  df-3or 897  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-v 2576  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-br 3792  df-opab 3846  df-tr 3882  df-eprel 4053  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-ni 6459  df-lti 6462
This theorem is referenced by:  ltsonq  6553
  Copyright terms: Public domain W3C validator