ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttr GIF version

Theorem lttr 7151
Description: Alias for axlttrn 7147, for naming consistency with lttri 7181. New proofs should generally use this instead of ax-pre-lttrn 7056. (Contributed by NM, 10-Mar-2008.)
Assertion
Ref Expression
lttr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))

Proof of Theorem lttr
StepHypRef Expression
1 axlttrn 7147 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  w3a 896  wcel 1409   class class class wbr 3792  cr 6946   < clt 7119
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-cnex 7033  ax-resscn 7034  ax-pre-lttrn 7056
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-xp 4379  df-pnf 7121  df-mnf 7122  df-ltxr 7124
This theorem is referenced by:  ltso  7155  ltleletr  7159  ltnsym  7163  lttri  7181  lttrd  7201  lt2add  7514  lt2sub  7529  mulgt1  7904  recgt1i  7939  recreclt  7941  nnge1  8013  recnz  8391  gtndiv  8393  xrlttr  8817  fzo1fzo0n0  9141  expnbnd  9540  expnlbnd  9541  ltoddhalfle  10205  nno  10218
  Copyright terms: Public domain W3C validator