ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttri3 GIF version

Theorem lttri3 7258
Description: Tightness of real apartness. (Contributed by NM, 5-May-1999.)
Assertion
Ref Expression
lttri3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))

Proof of Theorem lttri3
StepHypRef Expression
1 ltnr 7255 . . . . 5 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
2 breq2 3797 . . . . . 6 (𝐴 = 𝐵 → (𝐴 < 𝐴𝐴 < 𝐵))
32notbid 625 . . . . 5 (𝐴 = 𝐵 → (¬ 𝐴 < 𝐴 ↔ ¬ 𝐴 < 𝐵))
41, 3syl5ibcom 153 . . . 4 (𝐴 ∈ ℝ → (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵))
5 breq1 3796 . . . . . 6 (𝐴 = 𝐵 → (𝐴 < 𝐴𝐵 < 𝐴))
65notbid 625 . . . . 5 (𝐴 = 𝐵 → (¬ 𝐴 < 𝐴 ↔ ¬ 𝐵 < 𝐴))
71, 6syl5ibcom 153 . . . 4 (𝐴 ∈ ℝ → (𝐴 = 𝐵 → ¬ 𝐵 < 𝐴))
84, 7jcad 301 . . 3 (𝐴 ∈ ℝ → (𝐴 = 𝐵 → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
98adantr 270 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
10 ioran 702 . . 3 (¬ (𝐴 < 𝐵𝐵 < 𝐴) ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
11 axapti 7250 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵𝐵 < 𝐴)) → 𝐴 = 𝐵)
12113expia 1141 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 < 𝐵𝐵 < 𝐴) → 𝐴 = 𝐵))
1310, 12syl5bir 151 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴) → 𝐴 = 𝐵))
149, 13impbid 127 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662   = wceq 1285  wcel 1434   class class class wbr 3793  cr 7042   < clt 7215
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-pre-ltirr 7150  ax-pre-apti 7153
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-xp 4377  df-pnf 7217  df-mnf 7218  df-ltxr 7220
This theorem is referenced by:  letri3  7259  lttri3i  7275  lttri3d  7292  inelr  7751  lbinf  8093  suprubex  8096  suprlubex  8097  suprleubex  8099  suprzclex  8526  infrenegsupex  8763  supminfex  8766  xrlttri3  8948  maxleim  10229  maxabs  10233  maxleast  10237  zsupcl  10487  zssinfcl  10488  infssuzledc  10490  dvdslegcd  10500  bezoutlemsup  10542  dfgcd2  10547  lcmgcdlem  10603
  Copyright terms: Public domain W3C validator