ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttrsr GIF version

Theorem lttrsr 7570
Description: Signed real 'less than' is a transitive relation. (Contributed by Jim Kingdon, 4-Jan-2019.)
Assertion
Ref Expression
lttrsr ((𝑓R𝑔RR) → ((𝑓 <R 𝑔𝑔 <R ) → 𝑓 <R ))
Distinct variable group:   𝑓,𝑔,

Proof of Theorem lttrsr
Dummy variables 𝑟 𝑠 𝑡 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7535 . 2 R = ((P × P) / ~R )
2 breq1 3932 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R𝑓 <R [⟨𝑧, 𝑤⟩] ~R ))
32anbi1d 460 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) ↔ (𝑓 <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R )))
4 breq1 3932 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R𝑓 <R [⟨𝑣, 𝑢⟩] ~R ))
53, 4imbi12d 233 . 2 ([⟨𝑥, 𝑦⟩] ~R = 𝑓 → ((([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) ↔ ((𝑓 <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → 𝑓 <R [⟨𝑣, 𝑢⟩] ~R )))
6 breq2 3933 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → (𝑓 <R [⟨𝑧, 𝑤⟩] ~R𝑓 <R 𝑔))
7 breq1 3932 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R𝑔 <R [⟨𝑣, 𝑢⟩] ~R ))
86, 7anbi12d 464 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → ((𝑓 <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) ↔ (𝑓 <R 𝑔𝑔 <R [⟨𝑣, 𝑢⟩] ~R )))
98imbi1d 230 . 2 ([⟨𝑧, 𝑤⟩] ~R = 𝑔 → (((𝑓 <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → 𝑓 <R [⟨𝑣, 𝑢⟩] ~R ) ↔ ((𝑓 <R 𝑔𝑔 <R [⟨𝑣, 𝑢⟩] ~R ) → 𝑓 <R [⟨𝑣, 𝑢⟩] ~R )))
10 breq2 3933 . . . 4 ([⟨𝑣, 𝑢⟩] ~R = → (𝑔 <R [⟨𝑣, 𝑢⟩] ~R𝑔 <R ))
1110anbi2d 459 . . 3 ([⟨𝑣, 𝑢⟩] ~R = → ((𝑓 <R 𝑔𝑔 <R [⟨𝑣, 𝑢⟩] ~R ) ↔ (𝑓 <R 𝑔𝑔 <R )))
12 breq2 3933 . . 3 ([⟨𝑣, 𝑢⟩] ~R = → (𝑓 <R [⟨𝑣, 𝑢⟩] ~R𝑓 <R ))
1311, 12imbi12d 233 . 2 ([⟨𝑣, 𝑢⟩] ~R = → (((𝑓 <R 𝑔𝑔 <R [⟨𝑣, 𝑢⟩] ~R ) → 𝑓 <R [⟨𝑣, 𝑢⟩] ~R ) ↔ ((𝑓 <R 𝑔𝑔 <R ) → 𝑓 <R )))
14 ltsrprg 7555 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
15143adant3 1001 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
16 ltaprg 7427 . . . . . . . 8 ((𝑟P𝑠P𝑡P) → (𝑟<P 𝑠 ↔ (𝑡 +P 𝑟)<P (𝑡 +P 𝑠)))
1716adantl 275 . . . . . . 7 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑟P𝑠P𝑡P)) → (𝑟<P 𝑠 ↔ (𝑡 +P 𝑟)<P (𝑡 +P 𝑠)))
18 simp1l 1005 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑥P)
19 simp2r 1008 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑤P)
20 addclpr 7345 . . . . . . . 8 ((𝑥P𝑤P) → (𝑥 +P 𝑤) ∈ P)
2118, 19, 20syl2anc 408 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 +P 𝑤) ∈ P)
22 simp1r 1006 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑦P)
23 simp2l 1007 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑧P)
24 addclpr 7345 . . . . . . . 8 ((𝑦P𝑧P) → (𝑦 +P 𝑧) ∈ P)
2522, 23, 24syl2anc 408 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 +P 𝑧) ∈ P)
26 simp3r 1010 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑢P)
27 addcomprg 7386 . . . . . . . 8 ((𝑟P𝑠P) → (𝑟 +P 𝑠) = (𝑠 +P 𝑟))
2827adantl 275 . . . . . . 7 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑟P𝑠P)) → (𝑟 +P 𝑠) = (𝑠 +P 𝑟))
2917, 21, 25, 26, 28caovord2d 5940 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ((𝑥 +P 𝑤) +P 𝑢)<P ((𝑦 +P 𝑧) +P 𝑢)))
30 addassprg 7387 . . . . . . . 8 ((𝑥P𝑤P𝑢P) → ((𝑥 +P 𝑤) +P 𝑢) = (𝑥 +P (𝑤 +P 𝑢)))
3118, 19, 26, 30syl3anc 1216 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 +P 𝑤) +P 𝑢) = (𝑥 +P (𝑤 +P 𝑢)))
32 addassprg 7387 . . . . . . . 8 ((𝑦P𝑧P𝑢P) → ((𝑦 +P 𝑧) +P 𝑢) = (𝑦 +P (𝑧 +P 𝑢)))
3322, 23, 26, 32syl3anc 1216 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑦 +P 𝑧) +P 𝑢) = (𝑦 +P (𝑧 +P 𝑢)))
3431, 33breq12d 3942 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (((𝑥 +P 𝑤) +P 𝑢)<P ((𝑦 +P 𝑧) +P 𝑢) ↔ (𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢))))
3529, 34bitrd 187 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ (𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢))))
3615, 35bitrd 187 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢))))
37 ltsrprg 7555 . . . . . 6 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ↔ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))
38373adant1 999 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ↔ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))
39 addclpr 7345 . . . . . . 7 ((𝑧P𝑢P) → (𝑧 +P 𝑢) ∈ P)
4023, 26, 39syl2anc 408 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑧 +P 𝑢) ∈ P)
41 simp3l 1009 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → 𝑣P)
42 addclpr 7345 . . . . . . 7 ((𝑤P𝑣P) → (𝑤 +P 𝑣) ∈ P)
4319, 41, 42syl2anc 408 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑤 +P 𝑣) ∈ P)
44 ltaprg 7427 . . . . . 6 (((𝑧 +P 𝑢) ∈ P ∧ (𝑤 +P 𝑣) ∈ P𝑦P) → ((𝑧 +P 𝑢)<P (𝑤 +P 𝑣) ↔ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))))
4540, 43, 22, 44syl3anc 1216 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 +P 𝑢)<P (𝑤 +P 𝑣) ↔ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))))
4638, 45bitrd 187 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ↔ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))))
4736, 46anbi12d 464 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) ↔ ((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢)) ∧ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣)))))
48 ltsopr 7404 . . . . 5 <P Or P
49 ltrelpr 7313 . . . . 5 <P ⊆ (P × P)
5048, 49sotri 4934 . . . 4 (((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢)) ∧ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))) → (𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣)))
51 addclpr 7345 . . . . . . . 8 ((𝑥P𝑢P) → (𝑥 +P 𝑢) ∈ P)
5218, 26, 51syl2anc 408 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 +P 𝑢) ∈ P)
53 addclpr 7345 . . . . . . . 8 ((𝑦P𝑣P) → (𝑦 +P 𝑣) ∈ P)
5422, 41, 53syl2anc 408 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 +P 𝑣) ∈ P)
55 ltaprg 7427 . . . . . . 7 (((𝑥 +P 𝑢) ∈ P ∧ (𝑦 +P 𝑣) ∈ P𝑤P) → ((𝑥 +P 𝑢)<P (𝑦 +P 𝑣) ↔ (𝑤 +P (𝑥 +P 𝑢))<P (𝑤 +P (𝑦 +P 𝑣))))
5652, 54, 19, 55syl3anc 1216 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 +P 𝑢)<P (𝑦 +P 𝑣) ↔ (𝑤 +P (𝑥 +P 𝑢))<P (𝑤 +P (𝑦 +P 𝑣))))
5756biimprd 157 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑤 +P (𝑥 +P 𝑢))<P (𝑤 +P (𝑦 +P 𝑣)) → (𝑥 +P 𝑢)<P (𝑦 +P 𝑣)))
58 addassprg 7387 . . . . . . . 8 ((𝑟P𝑠P𝑡P) → ((𝑟 +P 𝑠) +P 𝑡) = (𝑟 +P (𝑠 +P 𝑡)))
5958adantl 275 . . . . . . 7 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ (𝑟P𝑠P𝑡P)) → ((𝑟 +P 𝑠) +P 𝑡) = (𝑟 +P (𝑠 +P 𝑡)))
6018, 19, 26, 28, 59caov12d 5952 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑥 +P (𝑤 +P 𝑢)) = (𝑤 +P (𝑥 +P 𝑢)))
6122, 19, 41, 28, 59caov12d 5952 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑦 +P (𝑤 +P 𝑣)) = (𝑤 +P (𝑦 +P 𝑣)))
6260, 61breq12d 3942 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣)) ↔ (𝑤 +P (𝑥 +P 𝑢))<P (𝑤 +P (𝑦 +P 𝑣))))
63 ltsrprg 7555 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑣P𝑢P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ↔ (𝑥 +P 𝑢)<P (𝑦 +P 𝑣)))
64633adant2 1000 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ↔ (𝑥 +P 𝑢)<P (𝑦 +P 𝑣)))
6557, 62, 643imtr4d 202 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣)) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ))
6650, 65syl5 32 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (((𝑥 +P (𝑤 +P 𝑢))<P (𝑦 +P (𝑧 +P 𝑢)) ∧ (𝑦 +P (𝑧 +P 𝑢))<P (𝑦 +P (𝑤 +P 𝑣))) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ))
6747, 66sylbid 149 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ∧ [⟨𝑧, 𝑤⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ) → [⟨𝑥, 𝑦⟩] ~R <R [⟨𝑣, 𝑢⟩] ~R ))
681, 5, 9, 13, 673ecoptocl 6518 1 ((𝑓R𝑔RR) → ((𝑓 <R 𝑔𝑔 <R ) → 𝑓 <R ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  cop 3530   class class class wbr 3929  (class class class)co 5774  [cec 6427  Pcnp 7099   +P cpp 7101  <P cltp 7103   ~R cer 7104  Rcnr 7105   <R cltr 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-iplp 7276  df-iltp 7278  df-enr 7534  df-nr 7535  df-ltr 7538
This theorem is referenced by:  ltposr  7571
  Copyright terms: Public domain W3C validator