Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1expcl2 GIF version

Theorem m1expcl2 9595
 Description: Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
m1expcl2 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})

Proof of Theorem m1expcl2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neg1cn 8211 . . 3 -1 ∈ ℂ
2 prid1g 3504 . . 3 (-1 ∈ ℂ → -1 ∈ {-1, 1})
31, 2ax-mp 7 . 2 -1 ∈ {-1, 1}
4 neg1ap0 8215 . 2 -1 # 0
5 ax-1cn 7131 . . . 4 1 ∈ ℂ
6 prssi 3551 . . . 4 ((-1 ∈ ℂ ∧ 1 ∈ ℂ) → {-1, 1} ⊆ ℂ)
71, 5, 6mp2an 417 . . 3 {-1, 1} ⊆ ℂ
8 elpri 3429 . . . . 5 (𝑥 ∈ {-1, 1} → (𝑥 = -1 ∨ 𝑥 = 1))
97sseli 2996 . . . . . . . . 9 (𝑦 ∈ {-1, 1} → 𝑦 ∈ ℂ)
109mulm1d 7581 . . . . . . . 8 (𝑦 ∈ {-1, 1} → (-1 · 𝑦) = -𝑦)
11 elpri 3429 . . . . . . . . 9 (𝑦 ∈ {-1, 1} → (𝑦 = -1 ∨ 𝑦 = 1))
12 negeq 7368 . . . . . . . . . . 11 (𝑦 = -1 → -𝑦 = --1)
13 negneg1e1 8216 . . . . . . . . . . . 12 --1 = 1
14 1ex 7176 . . . . . . . . . . . . 13 1 ∈ V
1514prid2 3507 . . . . . . . . . . . 12 1 ∈ {-1, 1}
1613, 15eqeltri 2152 . . . . . . . . . . 11 --1 ∈ {-1, 1}
1712, 16syl6eqel 2170 . . . . . . . . . 10 (𝑦 = -1 → -𝑦 ∈ {-1, 1})
18 negeq 7368 . . . . . . . . . . 11 (𝑦 = 1 → -𝑦 = -1)
1918, 3syl6eqel 2170 . . . . . . . . . 10 (𝑦 = 1 → -𝑦 ∈ {-1, 1})
2017, 19jaoi 669 . . . . . . . . 9 ((𝑦 = -1 ∨ 𝑦 = 1) → -𝑦 ∈ {-1, 1})
2111, 20syl 14 . . . . . . . 8 (𝑦 ∈ {-1, 1} → -𝑦 ∈ {-1, 1})
2210, 21eqeltrd 2156 . . . . . . 7 (𝑦 ∈ {-1, 1} → (-1 · 𝑦) ∈ {-1, 1})
23 oveq1 5550 . . . . . . . 8 (𝑥 = -1 → (𝑥 · 𝑦) = (-1 · 𝑦))
2423eleq1d 2148 . . . . . . 7 (𝑥 = -1 → ((𝑥 · 𝑦) ∈ {-1, 1} ↔ (-1 · 𝑦) ∈ {-1, 1}))
2522, 24syl5ibr 154 . . . . . 6 (𝑥 = -1 → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1}))
269mulid2d 7199 . . . . . . . 8 (𝑦 ∈ {-1, 1} → (1 · 𝑦) = 𝑦)
27 id 19 . . . . . . . 8 (𝑦 ∈ {-1, 1} → 𝑦 ∈ {-1, 1})
2826, 27eqeltrd 2156 . . . . . . 7 (𝑦 ∈ {-1, 1} → (1 · 𝑦) ∈ {-1, 1})
29 oveq1 5550 . . . . . . . 8 (𝑥 = 1 → (𝑥 · 𝑦) = (1 · 𝑦))
3029eleq1d 2148 . . . . . . 7 (𝑥 = 1 → ((𝑥 · 𝑦) ∈ {-1, 1} ↔ (1 · 𝑦) ∈ {-1, 1}))
3128, 30syl5ibr 154 . . . . . 6 (𝑥 = 1 → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1}))
3225, 31jaoi 669 . . . . 5 ((𝑥 = -1 ∨ 𝑥 = 1) → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1}))
338, 32syl 14 . . . 4 (𝑥 ∈ {-1, 1} → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1}))
3433imp 122 . . 3 ((𝑥 ∈ {-1, 1} ∧ 𝑦 ∈ {-1, 1}) → (𝑥 · 𝑦) ∈ {-1, 1})
35 oveq2 5551 . . . . . . 7 (𝑥 = -1 → (1 / 𝑥) = (1 / -1))
36 1ap0 7757 . . . . . . . . . 10 1 # 0
37 divneg2ap 7891 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 # 0) → -(1 / 1) = (1 / -1))
385, 5, 36, 37mp3an 1269 . . . . . . . . 9 -(1 / 1) = (1 / -1)
39 1div1e1 7859 . . . . . . . . . 10 (1 / 1) = 1
4039negeqi 7369 . . . . . . . . 9 -(1 / 1) = -1
4138, 40eqtr3i 2104 . . . . . . . 8 (1 / -1) = -1
4241, 3eqeltri 2152 . . . . . . 7 (1 / -1) ∈ {-1, 1}
4335, 42syl6eqel 2170 . . . . . 6 (𝑥 = -1 → (1 / 𝑥) ∈ {-1, 1})
44 oveq2 5551 . . . . . . 7 (𝑥 = 1 → (1 / 𝑥) = (1 / 1))
4539, 15eqeltri 2152 . . . . . . 7 (1 / 1) ∈ {-1, 1}
4644, 45syl6eqel 2170 . . . . . 6 (𝑥 = 1 → (1 / 𝑥) ∈ {-1, 1})
4743, 46jaoi 669 . . . . 5 ((𝑥 = -1 ∨ 𝑥 = 1) → (1 / 𝑥) ∈ {-1, 1})
488, 47syl 14 . . . 4 (𝑥 ∈ {-1, 1} → (1 / 𝑥) ∈ {-1, 1})
4948adantr 270 . . 3 ((𝑥 ∈ {-1, 1} ∧ 𝑥 # 0) → (1 / 𝑥) ∈ {-1, 1})
507, 34, 15, 49expcl2lemap 9585 . 2 ((-1 ∈ {-1, 1} ∧ -1 # 0 ∧ 𝑁 ∈ ℤ) → (-1↑𝑁) ∈ {-1, 1})
513, 4, 50mp3an12 1259 1 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})
 Colors of variables: wff set class Syntax hints:   → wi 4   ∨ wo 662   = wceq 1285   ∈ wcel 1434   ⊆ wss 2974  {cpr 3407   class class class wbr 3793  (class class class)co 5543  ℂcc 7041  0cc0 7043  1c1 7044   · cmul 7048  -cneg 7347   # cap 7748   / cdiv 7827  ℤcz 8432  ↑cexp 9572 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156 This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-if 3360  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-ilim 4132  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-frec 6040  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828  df-inn 8107  df-n0 8356  df-z 8433  df-uz 8701  df-iseq 9522  df-iexp 9573 This theorem is referenced by:  m1expcl  9596  m1expeven  9620
 Copyright terms: Public domain W3C validator