ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1expeven GIF version

Theorem m1expeven 10333
Description: Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018.)
Assertion
Ref Expression
m1expeven (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)

Proof of Theorem m1expeven
StepHypRef Expression
1 zcn 9052 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
212timesd 8955 . . 3 (𝑁 ∈ ℤ → (2 · 𝑁) = (𝑁 + 𝑁))
32oveq2d 5783 . 2 (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = (-1↑(𝑁 + 𝑁)))
4 neg1cn 8818 . . . 4 -1 ∈ ℂ
5 neg1ap0 8822 . . . 4 -1 # 0
6 expaddzap 10330 . . . 4 (((-1 ∈ ℂ ∧ -1 # 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
74, 5, 6mpanl12 432 . . 3 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
87anidms 394 . 2 (𝑁 ∈ ℤ → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
9 m1expcl2 10308 . . 3 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})
10 neg1rr 8819 . . . . . 6 -1 ∈ ℝ
11 reexpclzap 10306 . . . . . 6 ((-1 ∈ ℝ ∧ -1 # 0 ∧ 𝑁 ∈ ℤ) → (-1↑𝑁) ∈ ℝ)
1210, 5, 11mp3an12 1305 . . . . 5 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ ℝ)
13 elprg 3542 . . . . 5 ((-1↑𝑁) ∈ ℝ → ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1)))
1412, 13syl 14 . . . 4 (𝑁 ∈ ℤ → ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1)))
15 oveq12 5776 . . . . . . 7 (((-1↑𝑁) = -1 ∧ (-1↑𝑁) = -1) → ((-1↑𝑁) · (-1↑𝑁)) = (-1 · -1))
1615anidms 394 . . . . . 6 ((-1↑𝑁) = -1 → ((-1↑𝑁) · (-1↑𝑁)) = (-1 · -1))
17 neg1mulneg1e1 8925 . . . . . 6 (-1 · -1) = 1
1816, 17syl6eq 2186 . . . . 5 ((-1↑𝑁) = -1 → ((-1↑𝑁) · (-1↑𝑁)) = 1)
19 oveq12 5776 . . . . . . 7 (((-1↑𝑁) = 1 ∧ (-1↑𝑁) = 1) → ((-1↑𝑁) · (-1↑𝑁)) = (1 · 1))
2019anidms 394 . . . . . 6 ((-1↑𝑁) = 1 → ((-1↑𝑁) · (-1↑𝑁)) = (1 · 1))
21 1t1e1 8865 . . . . . 6 (1 · 1) = 1
2220, 21syl6eq 2186 . . . . 5 ((-1↑𝑁) = 1 → ((-1↑𝑁) · (-1↑𝑁)) = 1)
2318, 22jaoi 705 . . . 4 (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → ((-1↑𝑁) · (-1↑𝑁)) = 1)
2414, 23syl6bi 162 . . 3 (𝑁 ∈ ℤ → ((-1↑𝑁) ∈ {-1, 1} → ((-1↑𝑁) · (-1↑𝑁)) = 1))
259, 24mpd 13 . 2 (𝑁 ∈ ℤ → ((-1↑𝑁) · (-1↑𝑁)) = 1)
263, 8, 253eqtrd 2174 1 (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480  {cpr 3523   class class class wbr 3924  (class class class)co 5767  cc 7611  cr 7612  0cc0 7613  1c1 7614   + caddc 7616   · cmul 7618  -cneg 7927   # cap 8336  2c2 8764  cz 9047  cexp 10285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-uz 9320  df-seqfrec 10212  df-exp 10286
This theorem is referenced by:  m1expe  11585  m1expo  11586  m1exp1  11587
  Copyright terms: Public domain W3C validator