ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  max0addsup GIF version

Theorem max0addsup 10306
Description: The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Jim Kingdon, 30-Jan-2022.)
Assertion
Ref Expression
max0addsup (𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) + sup({-𝐴, 0}, ℝ, < )) = (abs‘𝐴))

Proof of Theorem max0addsup
StepHypRef Expression
1 0re 7233 . . . . . 6 0 ∈ ℝ
2 maxabs 10296 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → sup({𝐴, 0}, ℝ, < ) = (((𝐴 + 0) + (abs‘(𝐴 − 0))) / 2))
31, 2mpan2 416 . . . . 5 (𝐴 ∈ ℝ → sup({𝐴, 0}, ℝ, < ) = (((𝐴 + 0) + (abs‘(𝐴 − 0))) / 2))
4 recn 7220 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
54addid1d 7376 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴)
64subid1d 7527 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − 0) = 𝐴)
76fveq2d 5233 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘(𝐴 − 0)) = (abs‘𝐴))
85, 7oveq12d 5581 . . . . . 6 (𝐴 ∈ ℝ → ((𝐴 + 0) + (abs‘(𝐴 − 0))) = (𝐴 + (abs‘𝐴)))
98oveq1d 5578 . . . . 5 (𝐴 ∈ ℝ → (((𝐴 + 0) + (abs‘(𝐴 − 0))) / 2) = ((𝐴 + (abs‘𝐴)) / 2))
103, 9eqtrd 2115 . . . 4 (𝐴 ∈ ℝ → sup({𝐴, 0}, ℝ, < ) = ((𝐴 + (abs‘𝐴)) / 2))
11 renegcl 7488 . . . . . 6 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
12 maxabs 10296 . . . . . 6 ((-𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → sup({-𝐴, 0}, ℝ, < ) = (((-𝐴 + 0) + (abs‘(-𝐴 − 0))) / 2))
1311, 1, 12sylancl 404 . . . . 5 (𝐴 ∈ ℝ → sup({-𝐴, 0}, ℝ, < ) = (((-𝐴 + 0) + (abs‘(-𝐴 − 0))) / 2))
1411recnd 7261 . . . . . . . 8 (𝐴 ∈ ℝ → -𝐴 ∈ ℂ)
1514addid1d 7376 . . . . . . 7 (𝐴 ∈ ℝ → (-𝐴 + 0) = -𝐴)
1614subid1d 7527 . . . . . . . . 9 (𝐴 ∈ ℝ → (-𝐴 − 0) = -𝐴)
1716fveq2d 5233 . . . . . . . 8 (𝐴 ∈ ℝ → (abs‘(-𝐴 − 0)) = (abs‘-𝐴))
184absnegd 10276 . . . . . . . 8 (𝐴 ∈ ℝ → (abs‘-𝐴) = (abs‘𝐴))
1917, 18eqtrd 2115 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘(-𝐴 − 0)) = (abs‘𝐴))
2015, 19oveq12d 5581 . . . . . 6 (𝐴 ∈ ℝ → ((-𝐴 + 0) + (abs‘(-𝐴 − 0))) = (-𝐴 + (abs‘𝐴)))
2120oveq1d 5578 . . . . 5 (𝐴 ∈ ℝ → (((-𝐴 + 0) + (abs‘(-𝐴 − 0))) / 2) = ((-𝐴 + (abs‘𝐴)) / 2))
2213, 21eqtrd 2115 . . . 4 (𝐴 ∈ ℝ → sup({-𝐴, 0}, ℝ, < ) = ((-𝐴 + (abs‘𝐴)) / 2))
2310, 22oveq12d 5581 . . 3 (𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) + sup({-𝐴, 0}, ℝ, < )) = (((𝐴 + (abs‘𝐴)) / 2) + ((-𝐴 + (abs‘𝐴)) / 2)))
244abscld 10268 . . . . . 6 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ)
2524recnd 7261 . . . . 5 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℂ)
264, 25addcld 7252 . . . 4 (𝐴 ∈ ℝ → (𝐴 + (abs‘𝐴)) ∈ ℂ)
2714, 25addcld 7252 . . . 4 (𝐴 ∈ ℝ → (-𝐴 + (abs‘𝐴)) ∈ ℂ)
28 2cnd 8231 . . . 4 (𝐴 ∈ ℝ → 2 ∈ ℂ)
29 2ap0 8251 . . . . 5 2 # 0
3029a1i 9 . . . 4 (𝐴 ∈ ℝ → 2 # 0)
3126, 27, 28, 30divdirapd 8034 . . 3 (𝐴 ∈ ℝ → (((𝐴 + (abs‘𝐴)) + (-𝐴 + (abs‘𝐴))) / 2) = (((𝐴 + (abs‘𝐴)) / 2) + ((-𝐴 + (abs‘𝐴)) / 2)))
324, 25, 14, 25add4d 7396 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 + (abs‘𝐴)) + (-𝐴 + (abs‘𝐴))) = ((𝐴 + -𝐴) + ((abs‘𝐴) + (abs‘𝐴))))
334negidd 7528 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 + -𝐴) = 0)
3433oveq1d 5578 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 + -𝐴) + ((abs‘𝐴) + (abs‘𝐴))) = (0 + ((abs‘𝐴) + (abs‘𝐴))))
3525, 25addcld 7252 . . . . . 6 (𝐴 ∈ ℝ → ((abs‘𝐴) + (abs‘𝐴)) ∈ ℂ)
3635addid2d 7377 . . . . 5 (𝐴 ∈ ℝ → (0 + ((abs‘𝐴) + (abs‘𝐴))) = ((abs‘𝐴) + (abs‘𝐴)))
3732, 34, 363eqtrd 2119 . . . 4 (𝐴 ∈ ℝ → ((𝐴 + (abs‘𝐴)) + (-𝐴 + (abs‘𝐴))) = ((abs‘𝐴) + (abs‘𝐴)))
3837oveq1d 5578 . . 3 (𝐴 ∈ ℝ → (((𝐴 + (abs‘𝐴)) + (-𝐴 + (abs‘𝐴))) / 2) = (((abs‘𝐴) + (abs‘𝐴)) / 2))
3923, 31, 383eqtr2d 2121 . 2 (𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) + sup({-𝐴, 0}, ℝ, < )) = (((abs‘𝐴) + (abs‘𝐴)) / 2))
40252timesd 8392 . . 3 (𝐴 ∈ ℝ → (2 · (abs‘𝐴)) = ((abs‘𝐴) + (abs‘𝐴)))
4140oveq1d 5578 . 2 (𝐴 ∈ ℝ → ((2 · (abs‘𝐴)) / 2) = (((abs‘𝐴) + (abs‘𝐴)) / 2))
4225, 28, 30divcanap3d 8001 . 2 (𝐴 ∈ ℝ → ((2 · (abs‘𝐴)) / 2) = (abs‘𝐴))
4339, 41, 423eqtr2d 2121 1 (𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) + sup({-𝐴, 0}, ℝ, < )) = (abs‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1285  wcel 1434  {cpr 3417   class class class wbr 3805  cfv 4952  (class class class)co 5563  supcsup 6489  cr 7094  0cc0 7095   + caddc 7098   · cmul 7100   < clt 7267  cmin 7398  -cneg 7399   # cap 7800   / cdiv 7879  2c2 8208  abscabs 10084
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208  ax-arch 7209  ax-caucvg 7210
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-frec 6060  df-sup 6491  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-2 8217  df-3 8218  df-4 8219  df-n0 8408  df-z 8485  df-uz 8753  df-rp 8868  df-iseq 9574  df-iexp 9625  df-cj 9930  df-re 9931  df-im 9932  df-rsqrt 10085  df-abs 10086
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator