ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxleim GIF version

Theorem maxleim 10310
Description: Value of maximum when we know which number is larger. (Contributed by Jim Kingdon, 21-Dec-2021.)
Assertion
Ref Expression
maxleim ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ, < ) = 𝐵))

Proof of Theorem maxleim
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 7328 . . . 4 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
21adantl 271 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
3 simplr 497 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → 𝐵 ∈ ℝ)
4 prid2g 3515 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ {𝐴, 𝐵})
53, 4syl 14 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → 𝐵 ∈ {𝐴, 𝐵})
6 simpll 496 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → 𝐴 ∈ ℝ)
76ad2antrr 472 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝐴 ∈ ℝ)
83ad2antrr 472 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝐵 ∈ ℝ)
9 simpllr 501 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝐴𝐵)
107, 8, 9lensymd 7368 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → ¬ 𝐵 < 𝐴)
11 breq2 3809 . . . . . . 7 (𝑦 = 𝐴 → (𝐵 < 𝑦𝐵 < 𝐴))
1211notbid 625 . . . . . 6 (𝑦 = 𝐴 → (¬ 𝐵 < 𝑦 ↔ ¬ 𝐵 < 𝐴))
1312adantl 271 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → (¬ 𝐵 < 𝑦 ↔ ¬ 𝐵 < 𝐴))
1410, 13mpbird 165 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → ¬ 𝐵 < 𝑦)
153ad2antrr 472 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝐵 ∈ ℝ)
1615ltnrd 7359 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → ¬ 𝐵 < 𝐵)
17 breq2 3809 . . . . . . 7 (𝑦 = 𝐵 → (𝐵 < 𝑦𝐵 < 𝐵))
1817notbid 625 . . . . . 6 (𝑦 = 𝐵 → (¬ 𝐵 < 𝑦 ↔ ¬ 𝐵 < 𝐵))
1918adantl 271 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → (¬ 𝐵 < 𝑦 ↔ ¬ 𝐵 < 𝐵))
2016, 19mpbird 165 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → ¬ 𝐵 < 𝑦)
21 elpri 3439 . . . . 5 (𝑦 ∈ {𝐴, 𝐵} → (𝑦 = 𝐴𝑦 = 𝐵))
2221adantl 271 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) → (𝑦 = 𝐴𝑦 = 𝐵))
2314, 20, 22mpjaodan 745 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ 𝑦 ∈ {𝐴, 𝐵}) → ¬ 𝐵 < 𝑦)
242, 3, 5, 23supmaxti 6512 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → sup({𝐴, 𝐵}, ℝ, < ) = 𝐵)
2524ex 113 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ, < ) = 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662   = wceq 1285  wcel 1434  {cpr 3417   class class class wbr 3805  supcsup 6490  cr 7112   < clt 7285  cle 7286
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7199  ax-resscn 7200  ax-pre-ltirr 7220  ax-pre-apti 7223
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-xp 4397  df-cnv 4399  df-iota 4917  df-riota 5520  df-sup 6492  df-pnf 7287  df-mnf 7288  df-xr 7289  df-ltxr 7290  df-le 7291
This theorem is referenced by:  maxleb  10321
  Copyright terms: Public domain W3C validator