Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Most Recent Proofs
 
Mirrors  >  Home  >  ILE Home  >  Th. List  >  Recent MPE Most Recent             Other  >  MM 100

Most recent proofs    These are the 100 (Unicode, GIF) or 1000 (Unicode, GIF) most recent proofs in the iset.mm database for the Intuitionistic Logic Explorer. The iset.mm database is maintained on GitHub with master (stable) and develop (development) versions. This page was created from the commit given on the MPE Most Recent Proofs page. The database from that commit is also available here: iset.mm.

See the MPE Most Recent Proofs page for news and some useful links.

Color key:   Intuitionistic Logic Explorer  Intuitionistic Logic Explorer   User Mathboxes  User Mathboxes  

Last updated on 16-Apr-2024 at 6:15 AM ET.
Recent Additions to the Intuitionistic Logic Explorer
DateLabelDescription
Theorem
 
4-Apr-2024prodrbdclem 11333 Lemma for prodrbdc 11336. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 4-Apr-2024.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝑁 ∈ (ℤ𝑀))       ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
 
24-Mar-2024prodfdivap 11309 The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) # 0)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))       (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
 
24-Mar-2024prodfrecap 11308 The reciprocal of a finite product. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) # 0)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) = (1 / (𝐹𝑘)))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)       (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))
 
23-Mar-2024prodfap0 11307 The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) # 0)       (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0)
 
22-Mar-2024prod3fmul 11303 The product of two infinite products. (Contributed by Scott Fenton, 18-Dec-2017.) (Revised by Jim Kingdon, 22-Mar-2024.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))       (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , 𝐺)‘𝑁)))
 
21-Mar-2024df-proddc 11313 Define the product of a series with an index set of integers 𝐴. This definition takes most of the aspects of df-sumdc 11116 and adapts them for multiplication instead of addition. However, we insist that in the infinite case, there is a nonzero tail of the sequence. This ensures that the convergence criteria match those of infinite sums. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 21-Mar-2024.)
𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
 
19-Mar-2024cos02pilt1 12921 Cosine is less than one between zero and 2 · π. (Contributed by Jim Kingdon, 19-Mar-2024.)
(𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) < 1)
 
19-Mar-2024cosq34lt1 12920 Cosine is less than one in the third and fourth quadrants. (Contributed by Jim Kingdon, 19-Mar-2024.)
(𝐴 ∈ (π[,)(2 · π)) → (cos‘𝐴) < 1)
 
14-Mar-2024coseq0q4123 12904 Location of the zeroes of cosine in (-(π / 2)(,)(3 · (π / 2))). (Contributed by Jim Kingdon, 14-Mar-2024.)
(𝐴 ∈ (-(π / 2)(,)(3 · (π / 2))) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
 
14-Mar-2024cosq23lt0 12903 The cosine of a number in the second and third quadrants is negative. (Contributed by Jim Kingdon, 14-Mar-2024.)
(𝐴 ∈ ((π / 2)(,)(3 · (π / 2))) → (cos‘𝐴) < 0)
 
9-Mar-2024pilem3 12853 Lemma for pi related theorems. (Contributed by Jim Kingdon, 9-Mar-2024.)
(π ∈ (2(,)4) ∧ (sin‘π) = 0)
 
9-Mar-2024exmidonfin 7043 If a finite ordinal is a natural number, excluded middle follows. That excluded middle implies that a finite ordinal is a natural number is proved in the Metamath Proof Explorer. That a natural number is a finite ordinal is shown at nnfi 6759 and nnon 4518. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
(ω = (On ∩ Fin) → EXMID)
 
9-Mar-2024exmidonfinlem 7042 Lemma for exmidonfin 7043. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
𝐴 = {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}}       (ω = (On ∩ Fin) → DECID 𝜑)
 
8-Mar-2024sin0pilem2 12852 Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
 
8-Mar-2024sin0pilem1 12851 Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
 
7-Mar-2024cosz12 12850 Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and Jim Kingdon, 7-Mar-2024.)
𝑝 ∈ (1(,)2)(cos‘𝑝) = 0
 
6-Mar-2024cos12dec 11463 Cosine is decreasing from one to two. (Contributed by Mario Carneiro and Jim Kingdon, 6-Mar-2024.)
((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴))
 
25-Feb-2024mul2lt0pn 9544 The product of multiplicands of different signs is negative. (Contributed by Jim Kingdon, 25-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 0)    &   (𝜑 → 0 < 𝐵)       (𝜑 → (𝐵 · 𝐴) < 0)
 
25-Feb-2024mul2lt0np 9543 The product of multiplicands of different signs is negative. (Contributed by Jim Kingdon, 25-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 0)    &   (𝜑 → 0 < 𝐵)       (𝜑 → (𝐴 · 𝐵) < 0)
 
25-Feb-2024lt0ap0 8403 A number which is less than zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.)
((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 # 0)
 
25-Feb-2024negap0d 8386 The negative of a number apart from zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → -𝐴 # 0)
 
24-Feb-2024lt0ap0d 8404 A real number less than zero is apart from zero. Deduction form. (Contributed by Jim Kingdon, 24-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 0)       (𝜑𝐴 # 0)
 
20-Feb-2024ivthdec 12780 The intermediate value theorem, decreasing case, for a strictly monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) < (𝐹𝑥))       (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
 
20-Feb-2024ivthinclemex 12778 Lemma for ivthinc 12779. Existence of a number between the lower cut and the upper cut. (Contributed by Jim Kingdon, 20-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))    &   𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}    &   𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}       (𝜑 → ∃!𝑧 ∈ (𝐴(,)𝐵)(∀𝑞𝐿 𝑞 < 𝑧 ∧ ∀𝑟𝑅 𝑧 < 𝑟))
 
19-Feb-2024ivthinclemuopn 12774 Lemma for ivthinc 12779. The upper cut is open. (Contributed by Jim Kingdon, 19-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))    &   𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}    &   𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}    &   (𝜑𝑆𝑅)       (𝜑 → ∃𝑞𝑅 𝑞 < 𝑆)
 
19-Feb-2024dedekindicc 12769 A Dedekind cut identifies a unique real number. Similar to df-inp 7267 except that the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 19-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐿 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑈 ⊆ (𝐴[,]𝐵))    &   (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))    &   (𝜑𝐴 < 𝐵)       (𝜑 → ∃!𝑥 ∈ (𝐴(,)𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
 
18-Feb-2024ivthinclemloc 12777 Lemma for ivthinc 12779. Locatedness. (Contributed by Jim Kingdon, 18-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))    &   𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}    &   𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}       (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑅)))
 
18-Feb-2024ivthinclemdisj 12776 Lemma for ivthinc 12779. The lower and upper cuts are disjoint. (Contributed by Jim Kingdon, 18-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))    &   𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}    &   𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}       (𝜑 → (𝐿𝑅) = ∅)
 
18-Feb-2024ivthinclemur 12775 Lemma for ivthinc 12779. The upper cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))    &   𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}    &   𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}       (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑅 ↔ ∃𝑞𝑅 𝑞 < 𝑟))
 
18-Feb-2024ivthinclemlr 12773 Lemma for ivthinc 12779. The lower cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))    &   𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}    &   𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}       (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
 
18-Feb-2024ivthinclemum 12771 Lemma for ivthinc 12779. The upper cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))    &   𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}    &   𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}       (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑅)
 
18-Feb-2024ivthinclemlm 12770 Lemma for ivthinc 12779. The lower cut is bounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))    &   𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}    &   𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}       (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
 
15-Feb-2024dedekindicclemeu 12767 Lemma for dedekindicc 12769. Part of proving uniqueness. (Contributed by Jim Kingdon, 15-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐿 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑈 ⊆ (𝐴[,]𝐵))    &   (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))    &   (𝜑𝐴 < 𝐵)    &   (𝜑𝐶 ∈ (𝐴[,]𝐵))    &   (𝜑 → (∀𝑞𝐿 𝑞 < 𝐶 ∧ ∀𝑟𝑈 𝐶 < 𝑟))    &   (𝜑𝐷 ∈ (𝐴[,]𝐵))    &   (𝜑 → (∀𝑞𝐿 𝑞 < 𝐷 ∧ ∀𝑟𝑈 𝐷 < 𝑟))    &   (𝜑𝐶 < 𝐷)       (𝜑 → ⊥)
 
15-Feb-2024dedekindicclemlu 12766 Lemma for dedekindicc 12769. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 15-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐿 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑈 ⊆ (𝐴[,]𝐵))    &   (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))    &   (𝜑𝐴 < 𝐵)       (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
 
15-Feb-2024dedekindicclemlub 12765 Lemma for dedekindicc 12769. The set L has a least upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐿 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑈 ⊆ (𝐴[,]𝐵))    &   (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))    &   (𝜑𝐴 < 𝐵)       (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)))
 
15-Feb-2024dedekindicclemloc 12764 Lemma for dedekindicc 12769. The set L is located. (Contributed by Jim Kingdon, 15-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐿 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑈 ⊆ (𝐴[,]𝐵))    &   (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))
 
15-Feb-2024dedekindicclemub 12763 Lemma for dedekindicc 12769. The lower cut has an upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐿 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑈 ⊆ (𝐴[,]𝐵))    &   (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝐿 𝑦 < 𝑥)
 
15-Feb-2024dedekindicclemuub 12762 Lemma for dedekindicc 12769. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 15-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐿 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑈 ⊆ (𝐴[,]𝐵))    &   (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))    &   (𝜑𝐶𝑈)       (𝜑 → ∀𝑧𝐿 𝑧 < 𝐶)
 
14-Feb-2024suplociccex 12761 An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 7830 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐵 < 𝐶)    &   (𝜑𝐴 ⊆ (𝐵[,]𝐶))    &   (𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))       (𝜑 → ∃𝑥 ∈ (𝐵[,]𝐶)(∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
14-Feb-2024suplociccreex 12760 An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 7830 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐵 < 𝐶)    &   (𝜑𝐴 ⊆ (𝐵[,]𝐶))    &   (𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
6-Feb-2024ivthinclemlopn 12772 Lemma for ivthinc 12779. The lower cut is open. (Contributed by Jim Kingdon, 6-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))    &   𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}    &   𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}    &   (𝜑𝑄𝐿)       (𝜑 → ∃𝑟𝐿 𝑄 < 𝑟)
 
5-Feb-2024ivthinc 12779 The intermediate value theorem, increasing case, for a strictly monotonic function. Theorem 5.5 of [Bauer], p. 494. This is Metamath 100 proof #79. (Contributed by Jim Kingdon, 5-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑈 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)    &   (𝜑𝐹 ∈ (𝐷cn→ℂ))    &   ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)    &   (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))    &   (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))       (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
 
2-Feb-2024dedekindeulemuub 12753 Lemma for dedekindeu 12759. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 2-Feb-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))    &   (𝜑𝐴𝑈)       (𝜑 → ∀𝑧𝐿 𝑧 < 𝐴)
 
31-Jan-2024dedekindeulemeu 12758 Lemma for dedekindeu 12759. Part of proving uniqueness. (Contributed by Jim Kingdon, 31-Jan-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → (∀𝑞𝐿 𝑞 < 𝐴 ∧ ∀𝑟𝑈 𝐴 < 𝑟))    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (∀𝑞𝐿 𝑞 < 𝐵 ∧ ∀𝑟𝑈 𝐵 < 𝑟))    &   (𝜑𝐴 < 𝐵)       (𝜑 → ⊥)
 
31-Jan-2024dedekindeulemlu 12757 Lemma for dedekindeu 12759. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 31-Jan-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
 
31-Jan-2024dedekindeulemlub 12756 Lemma for dedekindeu 12759. The set L has a least upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)))
 
31-Jan-2024dedekindeulemloc 12755 Lemma for dedekindeu 12759. The set L is located. (Contributed by Jim Kingdon, 31-Jan-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))
 
31-Jan-2024dedekindeulemub 12754 Lemma for dedekindeu 12759. The lower cut has an upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
 
30-Jan-2024axsuploc 7830 An inhabited, bounded-above, located set of reals has a supremum. Axiom for real and complex numbers, derived from ZF set theory. (This restates ax-pre-suploc 7734 with ordering on the extended reals.) (Contributed by Jim Kingdon, 30-Jan-2024.)
(((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
24-Jan-2024axpre-suploclemres 7702 Lemma for axpre-suploc 7703. The result. The proof just needs to define 𝐵 as basically the same set as 𝐴 (but expressed as a subset of R rather than a subset of ), and apply suplocsr 7610. (Contributed by Jim Kingdon, 24-Jan-2024.)
(𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐶𝐴)    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)    &   (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))    &   𝐵 = {𝑤R ∣ ⟨𝑤, 0R⟩ ∈ 𝐴}       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
23-Jan-2024ax-pre-suploc 7734 An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given 𝑥 < 𝑦, either there is an element of the set greater than 𝑥, or 𝑦 is an upper bound.

Although this and ax-caucvg 7733 are both completeness properties, countable choice would probably be needed to derive this from ax-caucvg 7733.

(Contributed by Jim Kingdon, 23-Jan-2024.)

(((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
23-Jan-2024axpre-suploc 7703 An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given 𝑥 < 𝑦, either there is an element of the set greater than 𝑥, or 𝑦 is an upper bound.

This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 7734. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.)

(((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
22-Jan-2024suplocsr 7610 An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)    &   (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))       (𝜑 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
 
21-Jan-2024bj-el2oss1o 12970 Shorter proof of el2oss1o 13177 using more axioms. (Contributed by BJ, 21-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ∈ 2o𝐴 ⊆ 1o)
 
21-Jan-2024ltm1sr 7578 Adding minus one to a signed real yields a smaller signed real. (Contributed by Jim Kingdon, 21-Jan-2024.)
(𝐴R → (𝐴 +R -1R) <R 𝐴)
 
19-Jan-2024suplocsrlempr 7608 Lemma for suplocsr 7610. The set 𝐵 has a least upper bound. (Contributed by Jim Kingdon, 19-Jan-2024.)
𝐵 = {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}    &   (𝜑𝐴R)    &   (𝜑𝐶𝐴)    &   (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)    &   (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))       (𝜑 → ∃𝑣P (∀𝑤𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤P (𝑤<P 𝑣 → ∃𝑢𝐵 𝑤<P 𝑢)))
 
18-Jan-2024suplocsrlemb 7607 Lemma for suplocsr 7610. The set 𝐵 is located. (Contributed by Jim Kingdon, 18-Jan-2024.)
𝐵 = {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}    &   (𝜑𝐴R)    &   (𝜑𝐶𝐴)    &   (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)    &   (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))       (𝜑 → ∀𝑢P𝑣P (𝑢<P 𝑣 → (∃𝑞𝐵 𝑢<P 𝑞 ∨ ∀𝑞𝐵 𝑞<P 𝑣)))
 
16-Jan-2024suplocsrlem 7609 Lemma for suplocsr 7610. The set 𝐴 has a least upper bound. (Contributed by Jim Kingdon, 16-Jan-2024.)
𝐵 = {𝑤P ∣ (𝐶 +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}    &   (𝜑𝐴R)    &   (𝜑𝐶𝐴)    &   (𝜑 → ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)    &   (𝜑 → ∀𝑥R𝑦R (𝑥 <R 𝑦 → (∃𝑧𝐴 𝑥 <R 𝑧 ∨ ∀𝑧𝐴 𝑧 <R 𝑦)))       (𝜑 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
 
14-Jan-2024suplocexprlemlub 7525 Lemma for suplocexpr 7526. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)    &   (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))    &   𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩       (𝜑 → (𝑦<P 𝐵 → ∃𝑧𝐴 𝑦<P 𝑧))
 
14-Jan-2024suplocexprlemub 7524 Lemma for suplocexpr 7526. The putative supremum is an upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)    &   (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))    &   𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩       (𝜑 → ∀𝑦𝐴 ¬ 𝐵<P 𝑦)
 
10-Jan-2024cbvcsbw 3002 Version of cbvcsb 3003 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.)
𝑦𝐶    &   𝑥𝐷    &   (𝑥 = 𝑦𝐶 = 𝐷)       𝐴 / 𝑥𝐶 = 𝐴 / 𝑦𝐷
 
10-Jan-2024cbvsbcw 2931 Version of cbvsbc 2932 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)
 
10-Jan-2024cbvabw 2260 Version of cbvab 2261 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝜑} = {𝑦𝜓}
 
9-Jan-2024suplocexprlemloc 7522 Lemma for suplocexpr 7526. The putative supremum is located. (Contributed by Jim Kingdon, 9-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)    &   (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))    &   𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩       (𝜑 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵))))
 
9-Jan-2024suplocexprlemdisj 7521 Lemma for suplocexpr 7526. The putative supremum is disjoint. (Contributed by Jim Kingdon, 9-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)    &   (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))    &   𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩       (𝜑 → ∀𝑞Q ¬ (𝑞 (1st𝐴) ∧ 𝑞 ∈ (2nd𝐵)))
 
9-Jan-2024suplocexprlemru 7520 Lemma for suplocexpr 7526. The upper cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)    &   (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))    &   𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩       (𝜑 → ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵))))
 
9-Jan-2024suplocexprlemrl 7518 Lemma for suplocexpr 7526. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)    &   (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))       (𝜑 → ∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
 
9-Jan-2024suplocexprlem2b 7515 Lemma for suplocexpr 7526. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩       (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
 
9-Jan-2024suplocexprlemell 7514 Lemma for suplocexpr 7526. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
(𝐵 (1st𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ (1st𝑥))
 
7-Jan-2024suplocexpr 7526 An inhabited, bounded-above, located set of positive reals has a supremum. (Contributed by Jim Kingdon, 7-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)    &   (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))       (𝜑 → ∃𝑥P (∀𝑦𝐴 ¬ 𝑥<P 𝑦 ∧ ∀𝑦P (𝑦<P 𝑥 → ∃𝑧𝐴 𝑦<P 𝑧)))
 
7-Jan-2024suplocexprlemex 7523 Lemma for suplocexpr 7526. The putative supremum is a positive real. (Contributed by Jim Kingdon, 7-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)    &   (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))    &   𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩       (𝜑𝐵P)
 
7-Jan-2024suplocexprlemmu 7519 Lemma for suplocexpr 7526. The upper cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)    &   (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))    &   𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩       (𝜑 → ∃𝑠Q 𝑠 ∈ (2nd𝐵))
 
7-Jan-2024suplocexprlemml 7517 Lemma for suplocexpr 7526. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)    &   (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))       (𝜑 → ∃𝑠Q 𝑠 (1st𝐴))
 
7-Jan-2024suplocexprlemss 7516 Lemma for suplocexpr 7526. 𝐴 is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.)
(𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)    &   (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))       (𝜑𝐴P)
 
5-Jan-2024dedekindicclemicc 12768 Lemma for dedekindicc 12769. Same as dedekindicc 12769, except that we merely show 𝑥 to be an element of (𝐴[,]𝐵). Later we will strengthen that to (𝐴(,)𝐵). (Contributed by Jim Kingdon, 5-Jan-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐿 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑈 ⊆ (𝐴[,]𝐵))    &   (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))    &   (𝜑𝐴 < 𝐵)       (𝜑 → ∃!𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
 
5-Jan-2024dedekindeu 12759 A Dedekind cut identifies a unique real number. Similar to df-inp 7267 except that the the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 5-Jan-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∃!𝑥 ∈ ℝ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
 
31-Dec-2023dvmptsubcn 12843 Function-builder for derivative, subtraction rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐵𝑉)    &   (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵))    &   ((𝜑𝑥 ∈ ℂ) → 𝐶 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐷𝑊)    &   (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐶)) = (𝑥 ∈ ℂ ↦ 𝐷))       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴𝐶))) = (𝑥 ∈ ℂ ↦ (𝐵𝐷)))
 
31-Dec-2023dvmptnegcn 12842 Function-builder for derivative, product rule for negatives. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐵𝑉)    &   (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵))       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ -𝐴)) = (𝑥 ∈ ℂ ↦ -𝐵))
 
31-Dec-2023dvmptcmulcn 12841 Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐵𝑉)    &   (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵))    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐶 · 𝐴))) = (𝑥 ∈ ℂ ↦ (𝐶 · 𝐵)))
 
31-Dec-2023brm 3973 If two sets are in a binary relation, the relation is inhabited. (Contributed by Jim Kingdon, 31-Dec-2023.)
(𝐴𝑅𝐵 → ∃𝑥 𝑥𝑅)
 
30-Dec-2023dvmptccn 12837 Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 0))
 
30-Dec-2023dvmptidcn 12836 Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.)
(ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1)
 
25-Dec-2023ctfoex 6996 A countable class is a set. (Contributed by Jim Kingdon, 25-Dec-2023.)
(∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝐴 ∈ V)
 
23-Dec-2023enct 11935 Countability is invariant relative to equinumerosity. (Contributed by Jim Kingdon, 23-Dec-2023.)
(𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
 
23-Dec-2023enctlem 11934 Lemma for enct 11935. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.)
(𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
 
23-Dec-2023omct 6995 ω is countable. (Contributed by Jim Kingdon, 23-Dec-2023.)
𝑓 𝑓:ω–onto→(ω ⊔ 1o)
 
21-Dec-2023dvcoapbr 12829 The chain rule for derivatives at a point. The 𝑢 # 𝐶 → (𝐺𝑢) # (𝐺𝐶) hypothesis constrains what functions work for 𝐺. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 21-Dec-2023.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐺:𝑌𝑋)    &   (𝜑𝑌𝑇)    &   (𝜑 → ∀𝑢𝑌 (𝑢 # 𝐶 → (𝐺𝑢) # (𝐺𝐶)))    &   (𝜑𝑆 ⊆ ℂ)    &   (𝜑𝑇 ⊆ ℂ)    &   (𝜑 → (𝐺𝐶)(𝑆 D 𝐹)𝐾)    &   (𝜑𝐶(𝑇 D 𝐺)𝐿)    &   𝐽 = (MetOpen‘(abs ∘ − ))       (𝜑𝐶(𝑇 D (𝐹𝐺))(𝐾 · 𝐿))
 
19-Dec-2023apsscn 8402 The points apart from a given point are complex numbers. (Contributed by Jim Kingdon, 19-Dec-2023.)
{𝑥𝐴𝑥 # 𝐵} ⊆ ℂ
 
19-Dec-2023aprcl 8401 Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.)
(𝐴 # 𝐵 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
 
18-Dec-2023limccoap 12805 Composition of two limits. This theorem is only usable in the case where 𝑥 # 𝑋 implies R(x) # 𝐶 so it is less general than might appear at first. (Contributed by Mario Carneiro, 29-Dec-2016.) (Revised by Jim Kingdon, 18-Dec-2023.)
((𝜑𝑥 ∈ {𝑤𝐴𝑤 # 𝑋}) → 𝑅 ∈ {𝑤𝐵𝑤 # 𝐶})    &   ((𝜑𝑦 ∈ {𝑤𝐵𝑤 # 𝐶}) → 𝑆 ∈ ℂ)    &   (𝜑𝐶 ∈ ((𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑅) lim 𝑋))    &   (𝜑𝐷 ∈ ((𝑦 ∈ {𝑤𝐵𝑤 # 𝐶} ↦ 𝑆) lim 𝐶))    &   (𝑦 = 𝑅𝑆 = 𝑇)       (𝜑𝐷 ∈ ((𝑥 ∈ {𝑤𝐴𝑤 # 𝑋} ↦ 𝑇) lim 𝑋))
 
16-Dec-2023cnreim 10743 Complex apartness in terms of real and imaginary parts. See also apreim 8358 which is similar but with different notation. (Contributed by Jim Kingdon, 16-Dec-2023.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
 
14-Dec-2023cnopnap 12752 The complex numbers apart from a given complex number form an open set. (Contributed by Jim Kingdon, 14-Dec-2023.)
(𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )))
 
14-Dec-2023cnovex 12354 The class of all continuous functions from a topology to another is a set. (Contributed by Jim Kingdon, 14-Dec-2023.)
((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)
 
13-Dec-2023reopnap 12696 The real numbers apart from a given real number form an open set. (Contributed by Jim Kingdon, 13-Dec-2023.)
(𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ∈ (topGen‘ran (,)))
 
12-Dec-2023cnopncntop 12695 The set of complex numbers is open with respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by Jim Kingdon, 12-Dec-2023.)
ℂ ∈ (MetOpen‘(abs ∘ − ))
 
12-Dec-2023unicntopcntop 12694 The underlying set of the standard topology on the complex numbers is the set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by Jim Kingdon, 12-Dec-2023.)
ℂ = (MetOpen‘(abs ∘ − ))
 
4-Dec-2023bj-pm2.18st 12947 Clavius law for stable formulas. See pm2.18dc 840. (Contributed by BJ, 4-Dec-2023.)
(STAB 𝜑 → ((¬ 𝜑𝜑) → 𝜑))
 
4-Dec-2023bj-nnclavius 12939 Clavius law with doubly negated consequent. (Contributed by BJ, 4-Dec-2023.)
((¬ 𝜑𝜑) → ¬ ¬ 𝜑)
 
2-Dec-2023dvmulxx 12826 The product rule for derivatives at a point. For the (more general) relation version, see dvmulxxbr 12824. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 2-Dec-2023.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝐶 ∈ dom (𝑆 D 𝐹))    &   (𝜑𝐶 ∈ dom (𝑆 D 𝐺))       (𝜑 → ((𝑆 D (𝐹𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶))))
 
1-Dec-2023dvmulxxbr 12824 The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmulxx 12826. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 1-Dec-2023.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐶(𝑆 D 𝐹)𝐾)    &   (𝜑𝐶(𝑆 D 𝐺)𝐿)    &   𝐽 = (MetOpen‘(abs ∘ − ))       (𝜑𝐶(𝑆 D (𝐹𝑓 · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))))
 
29-Nov-2023subctctexmid 13185 If every subcountable set is countable and Markov's principle holds, excluded middle follows. Proposition 2.6 of [BauerSwan], p. 14:4. The proof is taken from that paper. (Contributed by Jim Kingdon, 29-Nov-2023.)
(𝜑 → ∀𝑥(∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝑥) → ∃𝑔 𝑔:ω–onto→(𝑥 ⊔ 1o)))    &   (𝜑 → ω ∈ Markov)       (𝜑EXMID)
 
29-Nov-2023ismkvnex 7022 The predicate of being Markov stated in terms of double negation and comparison with 1o. (Contributed by Jim Kingdon, 29-Nov-2023.)
(𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)))
 
28-Nov-2023exmid1stab 13184 If any proposition is stable, excluded middle follows. We are thinking of 𝑥 as a proposition and 𝑥 = {∅} as "x is true". (Contributed by Jim Kingdon, 28-Nov-2023.)
((𝜑𝑥 ⊆ {∅}) → STAB 𝑥 = {∅})       (𝜑EXMID)
 
28-Nov-2023ccfunen 7072 Existence of a choice function for a countably infinite set. (Contributed by Jim Kingdon, 28-Nov-2023.)
(𝜑CCHOICE)    &   (𝜑𝐴 ≈ ω)    &   (𝜑 → ∀𝑥𝐴𝑤 𝑤𝑥)       (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
 
27-Nov-2023df-cc 7071 The expression CCHOICE will be used as a readable shorthand for any form of countable choice, analogous to df-ac 7055 for full choice. (Contributed by Jim Kingdon, 27-Nov-2023.)
(CCHOICE ↔ ∀𝑥(dom 𝑥 ≈ ω → ∃𝑓(𝑓𝑥𝑓 Fn dom 𝑥)))
 
26-Nov-2023offeq 5988 Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Jim Kingdon, 26-Nov-2023.)
((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)    &   (𝜑𝐹:𝐴𝑆)    &   (𝜑𝐺:𝐵𝑇)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝐴𝐵) = 𝐶    &   (𝜑𝐻:𝐶𝑈)    &   ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐷)    &   ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐸)    &   ((𝜑𝑥𝐶) → (𝐷𝑅𝐸) = (𝐻𝑥))       (𝜑 → (𝐹𝑓 𝑅𝐺) = 𝐻)
 
25-Nov-2023dvaddxx 12825 The sum rule for derivatives at a point. For the (more general) relation version, see dvaddxxbr 12823. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝐶 ∈ dom (𝑆 D 𝐹))    &   (𝜑𝐶 ∈ dom (𝑆 D 𝐺))       (𝜑 → ((𝑆 D (𝐹𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶)))
 
25-Nov-2023dvaddxxbr 12823 The sum rule for derivatives at a point. That is, if the derivative of 𝐹 at 𝐶 is 𝐾 and the derivative of 𝐺 at 𝐶 is 𝐿, then the derivative of the pointwise sum of those two functions at 𝐶 is 𝐾 + 𝐿. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐶(𝑆 D 𝐹)𝐾)    &   (𝜑𝐶(𝑆 D 𝐺)𝐿)    &   𝐽 = (MetOpen‘(abs ∘ − ))       (𝜑𝐶(𝑆 D (𝐹𝑓 + 𝐺))(𝐾 + 𝐿))
 
25-Nov-2023dcnn 833 Decidability of the negation of a proposition is equivalent to decidability of its double negation. See also dcn 827. The relation between dcn 827 and dcnn 833 is analogous to that between notnot 618 and notnotnot 623 (and directly stems from it). Using the notion of "testable proposition" (proposition whose negation is decidable), dcnn 833 means that a proposition is testable if and only if its negation is testable, and dcn 827 means that decidability implies testability. (Contributed by David A. Wheeler, 6-Dec-2018.) (Proof shortened by BJ, 25-Nov-2023.)
(DECID ¬ 𝜑DECID ¬ ¬ 𝜑)
 
24-Nov-2023bj-dcst 12956 Stability of a proposition is decidable if and only if that proposition is stable. (Contributed by BJ, 24-Nov-2023.)
(DECID STAB 𝜑STAB 𝜑)
 
24-Nov-2023bj-nnbidc 12951 If a formula is not refutable, then it is decidable if and only if it is provable. See also comment of bj-nnbist 12942. (Contributed by BJ, 24-Nov-2023.)
(¬ ¬ 𝜑 → (DECID 𝜑𝜑))
 
24-Nov-2023bj-dcstab 12950 A decidable formula is stable. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.)
(DECID 𝜑STAB 𝜑)
 
24-Nov-2023bj-fadc 12949 A refutable formula is decidable. (Contributed by BJ, 24-Nov-2023.)
𝜑DECID 𝜑)
 
24-Nov-2023bj-trdc 12948 A provable formula is decidable. (Contributed by BJ, 24-Nov-2023.)
(𝜑DECID 𝜑)
 
24-Nov-2023bj-stal 12946 The universal quantification of stable formula is stable. See bj-stim 12943 for implication, stabnot 818 for negation, and bj-stan 12944 for conjunction. (Contributed by BJ, 24-Nov-2023.)
(∀𝑥STAB 𝜑STAB𝑥𝜑)
 
24-Nov-2023bj-stand 12945 The conjunction of two stable formulas is stable. Deduction form of bj-stan 12944. Its proof is shorter, so one could prove it first and then bj-stan 12944 from it, the usual way. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.)
(𝜑STAB 𝜓)    &   (𝜑STAB 𝜒)       (𝜑STAB (𝜓𝜒))
 
24-Nov-2023bj-stan 12944 The conjunction of two stable formulas is stable. See bj-stim 12943 for implication, stabnot 818 for negation, and bj-stal 12946 for universal quantification. (Contributed by BJ, 24-Nov-2023.)
((STAB 𝜑STAB 𝜓) → STAB (𝜑𝜓))
 
24-Nov-2023bj-stim 12943 A conjunction with a stable consequent is stable. See stabnot 818 for negation and bj-stan 12944 for conjunction. (Contributed by BJ, 24-Nov-2023.)
(STAB 𝜓STAB (𝜑𝜓))
 
24-Nov-2023bj-nnbist 12942 If a formula is not refutable, then it is stable if and only if it is provable. By double-negation translation, if 𝜑 is a classical tautology, then ¬ ¬ 𝜑 is an intuitionistic tautology. Therefore, if 𝜑 is a classical tautology, then 𝜑 is intuitionistically equivalent to its stability (and to its decidability, see bj-nnbidc 12951). (Contributed by BJ, 24-Nov-2023.)
(¬ ¬ 𝜑 → (STAB 𝜑𝜑))
 
24-Nov-2023bj-fast 12941 A refutable formula is stable. (Contributed by BJ, 24-Nov-2023.)
𝜑STAB 𝜑)
 
24-Nov-2023bj-trst 12940 A provable formula is stable. (Contributed by BJ, 24-Nov-2023.)
(𝜑STAB 𝜑)
 
24-Nov-2023bj-nnal 12938 The double negation of a universal quantification implies the universal quantification of the double negation. (Contributed by BJ, 24-Nov-2023.)
(¬ ¬ ∀𝑥𝜑 → ∀𝑥 ¬ ¬ 𝜑)
 
24-Nov-2023bj-nnan 12937 The double negation of a conjunction implies the conjunction of the double negations. (Contributed by BJ, 24-Nov-2023.)
(¬ ¬ (𝜑𝜓) → (¬ ¬ 𝜑 ∧ ¬ ¬ 𝜓))
 
24-Nov-2023bj-nnim 12936 The double negation of an implication implies the implication with the consequent doubly negated. (Contributed by BJ, 24-Nov-2023.)
(¬ ¬ (𝜑𝜓) → (𝜑 → ¬ ¬ 𝜓))
 
24-Nov-2023bj-nnsn 12934 As far as implying a negated formula is concerned, a formula is equivalent to its double negation. (Contributed by BJ, 24-Nov-2023.)
((𝜑 → ¬ 𝜓) ↔ (¬ ¬ 𝜑 → ¬ 𝜓))
 
22-Nov-2023ofvalg 5984 Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐺 Fn 𝐵)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝐴𝐵) = 𝑆    &   ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)    &   ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)    &   ((𝜑𝑋𝑆) → (𝐶𝑅𝐷) ∈ 𝑈)       ((𝜑𝑋𝑆) → ((𝐹𝑓 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷))
 
21-Nov-2023exmidac 7058 The axiom of choice implies excluded middle. See acexmid 5766 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.)
(CHOICEEXMID)
 
21-Nov-2023exmidaclem 7057 Lemma for exmidac 7058. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.)
𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝑦 = {∅})}    &   𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝑦 = {∅})}    &   𝐶 = {𝐴, 𝐵}       (CHOICEEXMID)
 
21-Nov-2023exmid1dc 4118 A convenience theorem for proving that something implies EXMID. Think of this as an alternative to using a proposition, as in proofs like undifexmid 4112 or ordtriexmid 4432. In this context 𝑥 = {∅} can be thought of as "x is true". (Contributed by Jim Kingdon, 21-Nov-2023.)
((𝜑𝑥 ⊆ {∅}) → DECID 𝑥 = {∅})       (𝜑EXMID)
 
20-Nov-2023acfun 7056 A convenient form of choice. The goal here is to state choice as the existence of a choice function on a set of inhabited sets, while making full use of our notation around functions and function values. (Contributed by Jim Kingdon, 20-Nov-2023.)
(𝜑CHOICE)    &   (𝜑𝐴𝑉)    &   (𝜑 → ∀𝑥𝐴𝑤 𝑤𝑥)       (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
 
18-Nov-2023condc 838 Contraposition of a decidable proposition.

This theorem swaps or "transposes" the order of the consequents when negation is removed. An informal example is that the statement "if there are no clouds in the sky, it is not raining" implies the statement "if it is raining, there are clouds in the sky." This theorem (without the decidability condition, of course) is called Transp or "the principle of transposition" in Principia Mathematica (Theorem *2.17 of [WhiteheadRussell] p. 103) and is Axiom A3 of [Margaris] p. 49. We will also use the term "contraposition" for this principle, although the reader is advised that in the field of philosophical logic, "contraposition" has a different technical meaning.

(Contributed by Jim Kingdon, 13-Mar-2018.) (Proof shortened by BJ, 18-Nov-2023.)

(DECID 𝜑 → ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑)))
 
18-Nov-2023const 837 Contraposition of a stable proposition. See comment of condc 838. (Contributed by BJ, 18-Nov-2023.)
(STAB 𝜑 → ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑)))
 
18-Nov-2023stdcn 832 A formula is stable if and only if the decidability of its negation implies its decidability. Note that the right-hand side of this biconditional is the converse of dcn 827. (Contributed by BJ, 18-Nov-2023.)
(STAB 𝜑 ↔ (DECID ¬ 𝜑DECID 𝜑))
 
17-Nov-2023cnplimclemr 12796 Lemma for cnplimccntop 12797. The reverse direction. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = (𝐾t 𝐴)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐵𝐴)    &   (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))       (𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
 
17-Nov-2023cnplimclemle 12795 Lemma for cnplimccntop 12797. Satisfying the epsilon condition for continuity. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = (𝐾t 𝐴)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐵𝐴)    &   (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))    &   (𝜑𝐸 ∈ ℝ+)    &   (𝜑𝐷 ∈ ℝ+)    &   (𝜑𝑍𝐴)    &   ((𝜑𝑍 # 𝐵 ∧ (abs‘(𝑍𝐵)) < 𝐷) → (abs‘((𝐹𝑍) − (𝐹𝐵))) < (𝐸 / 2))    &   (𝜑 → (abs‘(𝑍𝐵)) < 𝐷)       (𝜑 → (abs‘((𝐹𝑍) − (𝐹𝐵))) < 𝐸)
 
14-Nov-2023limccnp2cntop 12804 The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Nov-2023.)
((𝜑𝑥𝐴) → 𝑅𝑋)    &   ((𝜑𝑥𝐴) → 𝑆𝑌)    &   (𝜑𝑋 ⊆ ℂ)    &   (𝜑𝑌 ⊆ ℂ)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌))    &   (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵))    &   (𝜑𝐷 ∈ ((𝑥𝐴𝑆) lim 𝐵))    &   (𝜑𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩))       (𝜑 → (𝐶𝐻𝐷) ∈ ((𝑥𝐴 ↦ (𝑅𝐻𝑆)) lim 𝐵))
 
10-Nov-2023rpmaxcl 10988 The maximum of two positive real numbers is a positive real number. (Contributed by Jim Kingdon, 10-Nov-2023.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ+)
 
9-Nov-2023limccnp2lem 12803 Lemma for limccnp2cntop 12804. This is most of the result, expressed in epsilon-delta form, with a large number of hypotheses so that lengthy expressions do not need to be repeated. (Contributed by Jim Kingdon, 9-Nov-2023.)
((𝜑𝑥𝐴) → 𝑅𝑋)    &   ((𝜑𝑥𝐴) → 𝑆𝑌)    &   (𝜑𝑋 ⊆ ℂ)    &   (𝜑𝑌 ⊆ ℂ)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌))    &   (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵))    &   (𝜑𝐷 ∈ ((𝑥𝐴𝑆) lim 𝐵))    &   (𝜑𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩))    &   𝑥𝜑    &   (𝜑𝐸 ∈ ℝ+)    &   (𝜑𝐿 ∈ ℝ+)    &   (𝜑 → ∀𝑟𝑋𝑠𝑌 (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑟𝐻𝑠)) < 𝐸))    &   (𝜑𝐹 ∈ ℝ+)    &   (𝜑 → ∀𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝐹) → (abs‘(𝑅𝐶)) < 𝐿))    &   (𝜑𝐺 ∈ ℝ+)    &   (𝜑 → ∀𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝐺) → (abs‘(𝑆𝐷)) < 𝐿))       (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝑑) → (abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))) < 𝐸))
 
4-Nov-2023ellimc3apf 12787 Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 4-Nov-2023.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   𝑧𝐹       (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
 
3-Nov-2023limcmpted 12790 Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.)
(𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)       (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥))))
 
1-Nov-2023unct 11943 The union of two countable sets is countable. (Contributed by Jim Kingdon, 1-Nov-2023.)
((∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
 
31-Oct-2023ctiunct 11942 A sequence of enumerations gives an enumeration of the union. We refer to "sequence of enumerations" rather than "countably many countable sets" because the hypothesis provides more than countability for each 𝐵(𝑥): it refers to 𝐵(𝑥) together with the 𝐺(𝑥) which enumerates it.

The "countably many countable sets" version could be expressed as (𝜑𝑥𝐴) → ∃𝑔𝑔:ω–onto→(𝐵 ⊔ 1o) and countable choice would be needed to derive the current hypothesis from that.

Compare with the case of two sets instead of countably many, as seen at unct 11943, in which case we express countability using .

The proof proceeds by mapping a natural number to a pair of natural numbers (by xpomen 11897) and using the first number to map to an element 𝑥 of 𝐴 and the second number to map to an element of B(x) . In this way we are able to map to every element of 𝑥𝐴𝐵. Although it would be possible to work directly with countability expressed as 𝐹:ω–onto→(𝐴 ⊔ 1o), we instead use functions from subsets of the natural numbers via ctssdccl 6989 and ctssdc 6991.

(Contributed by Jim Kingdon, 31-Oct-2023.)

(𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))    &   ((𝜑𝑥𝐴) → 𝐺:ω–onto→(𝐵 ⊔ 1o))       (𝜑 → ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
 
30-Oct-2023ctssdccl 6989 A mapping from a decidable subset of the natural numbers onto a countable set. This is similar to one direction of ctssdc 6991 but expressed in terms of classes rather than . (Contributed by Jim Kingdon, 30-Oct-2023.)
(𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))    &   𝑆 = {𝑥 ∈ ω ∣ (𝐹𝑥) ∈ (inl “ 𝐴)}    &   𝐺 = (inl ∘ 𝐹)       (𝜑 → (𝑆 ⊆ ω ∧ 𝐺:𝑆onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑆))
 
28-Oct-2023ctiunctlemfo 11941 Lemma for ctiunct 11942. (Contributed by Jim Kingdon, 28-Oct-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)    &   ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)    &   ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)    &   (𝜑𝐽:ω–1-1-onto→(ω × ω))    &   𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}    &   𝐻 = (𝑛𝑈 ↦ ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))))    &   𝑥𝐻    &   𝑥𝑈       (𝜑𝐻:𝑈onto 𝑥𝐴 𝐵)
 
28-Oct-2023ctiunctlemf 11940 Lemma for ctiunct 11942. (Contributed by Jim Kingdon, 28-Oct-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)    &   ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)    &   ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)    &   (𝜑𝐽:ω–1-1-onto→(ω × ω))    &   𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}    &   𝐻 = (𝑛𝑈 ↦ ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))))       (𝜑𝐻:𝑈 𝑥𝐴 𝐵)
 
28-Oct-2023ctiunctlemudc 11939 Lemma for ctiunct 11942. (Contributed by Jim Kingdon, 28-Oct-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)    &   ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)    &   ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)    &   (𝜑𝐽:ω–1-1-onto→(ω × ω))    &   𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}       (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑈)
 
28-Oct-2023ctiunctlemuom 11938 Lemma for ctiunct 11942. (Contributed by Jim Kingdon, 28-Oct-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)    &   ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)    &   ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)    &   (𝜑𝐽:ω–1-1-onto→(ω × ω))    &   𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}       (𝜑𝑈 ⊆ ω)
 
28-Oct-2023ctiunctlemu2nd 11937 Lemma for ctiunct 11942. (Contributed by Jim Kingdon, 28-Oct-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)    &   ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)    &   ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)    &   (𝜑𝐽:ω–1-1-onto→(ω × ω))    &   𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}    &   (𝜑𝑁𝑈)       (𝜑 → (2nd ‘(𝐽𝑁)) ∈ (𝐹‘(1st ‘(𝐽𝑁))) / 𝑥𝑇)
 
28-Oct-2023ctiunctlemu1st 11936 Lemma for ctiunct 11942. (Contributed by Jim Kingdon, 28-Oct-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)    &   ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)    &   ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)    &   (𝜑𝐽:ω–1-1-onto→(ω × ω))    &   𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}    &   (𝜑𝑁𝑈)       (𝜑 → (1st ‘(𝐽𝑁)) ∈ 𝑆)
 
28-Oct-2023pm2.521gdc 853 A general instance of Theorem *2.521 of [WhiteheadRussell] p. 107, under a decidability condition. (Contributed by BJ, 28-Oct-2023.)
(DECID 𝜑 → (¬ (𝜑𝜓) → (𝜒𝜑)))
 
28-Oct-2023stdcndc 830 A formula is decidable if and only if its negation is decidable and it is stable (that is, it is testable and stable). (Contributed by David A. Wheeler, 13-Aug-2018.) (Proof shortened by BJ, 28-Oct-2023.)
((STAB 𝜑DECID ¬ 𝜑) ↔ DECID 𝜑)
 
28-Oct-2023conax1k 643 Weakening of conax1 642. General instance of pm2.51 644 and of pm2.52 645. (Contributed by BJ, 28-Oct-2023.)
(¬ (𝜑𝜓) → (𝜒 → ¬ 𝜓))
 
28-Oct-2023conax1 642 Contrapositive of ax-1 6. (Contributed by BJ, 28-Oct-2023.)
(¬ (𝜑𝜓) → ¬ 𝜓)
 
25-Oct-2023divcnap 12713 Complex number division is a continuous function, when the second argument is apart from zero. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Jim Kingdon, 25-Oct-2023.)
𝐽 = (MetOpen‘(abs ∘ − ))    &   𝐾 = (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0})       (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 / 𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
 
23-Oct-2023cnm 7633 A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.)
(𝐴 ∈ ℂ → ∃𝑥 𝑥𝐴)
 
23-Oct-2023oprssdmm 6062 Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.)
((𝜑𝑢𝑆) → ∃𝑣 𝑣𝑢)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   (𝜑 → Rel 𝐹)       (𝜑 → (𝑆 × 𝑆) ⊆ dom 𝐹)
 
22-Oct-2023addcncntoplem 12709 Lemma for addcncntop 12710, subcncntop 12711, and mulcncntop 12712. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 22-Oct-2023.)
𝐽 = (MetOpen‘(abs ∘ − ))    &    + :(ℂ × ℂ)⟶ℂ    &   ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))        + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
 
22-Oct-2023txmetcnp 12676 Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by Jim Kingdon, 22-Oct-2023.)
𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)    &   𝐿 = (MetOpen‘𝐸)       (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
 
22-Oct-2023xmetxpbl 12666 The maximum metric (Chebyshev distance) on the product of two sets, expressed in terms of balls centered on a point 𝐶 with radius 𝑅. (Contributed by Jim Kingdon, 22-Oct-2023.)
𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))    &   (𝜑𝑀 ∈ (∞Met‘𝑋))    &   (𝜑𝑁 ∈ (∞Met‘𝑌))    &   (𝜑𝑅 ∈ ℝ*)    &   (𝜑𝐶 ∈ (𝑋 × 𝑌))       (𝜑 → (𝐶(ball‘𝑃)𝑅) = (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅)))
 
15-Oct-2023xmettxlem 12667 Lemma for xmettx 12668. (Contributed by Jim Kingdon, 15-Oct-2023.)
𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))    &   (𝜑𝑀 ∈ (∞Met‘𝑋))    &   (𝜑𝑁 ∈ (∞Met‘𝑌))    &   𝐽 = (MetOpen‘𝑀)    &   𝐾 = (MetOpen‘𝑁)    &   𝐿 = (MetOpen‘𝑃)       (𝜑𝐿 ⊆ (𝐽 ×t 𝐾))
 
11-Oct-2023xmettx 12668 The maximum metric (Chebyshev distance) on the product of two sets, expressed as a binary topological product. (Contributed by Jim Kingdon, 11-Oct-2023.)
𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))    &   (𝜑𝑀 ∈ (∞Met‘𝑋))    &   (𝜑𝑁 ∈ (∞Met‘𝑌))    &   𝐽 = (MetOpen‘𝑀)    &   𝐾 = (MetOpen‘𝑁)    &   𝐿 = (MetOpen‘𝑃)       (𝜑𝐿 = (𝐽 ×t 𝐾))
 
11-Oct-2023xmetxp 12665 The maximum metric (Chebyshev distance) on the product of two sets. (Contributed by Jim Kingdon, 11-Oct-2023.)
𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))    &   (𝜑𝑀 ∈ (∞Met‘𝑋))    &   (𝜑𝑁 ∈ (∞Met‘𝑌))       (𝜑𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))
 
12-Sep-2023pwntru 4117 A slight strengthening of pwtrufal 13181. (Contributed by Mario Carneiro and Jim Kingdon, 12-Sep-2023.)
((𝐴 ⊆ {∅} ∧ 𝐴 ≠ {∅}) → 𝐴 = ∅)
 
11-Sep-2023pwtrufal 13181 A subset of the singleton {∅} cannot be anything other than or {∅}. Removing the double negation would change the meaning, as seen at exmid01 4116. If we view a subset of a singleton as a truth value (as seen in theorems like exmidexmid 4115), then this theorem states there are no truth values other than true and false, as described in section 1.1 of [Bauer], p. 481. (Contributed by Mario Carneiro and Jim Kingdon, 11-Sep-2023.)
(𝐴 ⊆ {∅} → ¬ ¬ (𝐴 = ∅ ∨ 𝐴 = {∅}))
 
9-Sep-2023mathbox 12933 (This theorem is a dummy placeholder for these guidelines. The label of this theorem, "mathbox", is hard-coded into the Metamath program to identify the start of the mathbox section for web page generation.)

A "mathbox" is a user-contributed section that is maintained by its contributor independently from the main part of iset.mm.

For contributors:

By making a contribution, you agree to release it into the public domain, according to the statement at the beginning of iset.mm.

Guidelines:

Mathboxes in iset.mm follow the same practices as in set.mm, so refer to the mathbox guidelines there for more details.

(Contributed by NM, 20-Feb-2007.) (Revised by the Metamath team, 9-Sep-2023.) (New usage is discouraged.)

𝜑       𝜑
 
6-Sep-2023djuexb 6922 The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.)
((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
 
3-Sep-2023pwf1oexmid 13183 An exercise related to 𝑁 copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.)
𝑇 = 𝑥𝑁 ({𝑥} × 1o)       ((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) → (ran 𝐺 = 𝒫 1o ↔ (𝑁 = 2oEXMID)))
 
3-Sep-2023pwle2 13182 An exercise related to 𝑁 copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.)
𝑇 = 𝑥𝑁 ({𝑥} × 1o)       ((𝑁 ∈ ω ∧ 𝐺:𝑇1-1→𝒫 1o) → 𝑁 ⊆ 2o)
 
30-Aug-2023isomninn 13215 Omniscience stated in terms of natural numbers. Similar to isomnimap 7002 but it will sometimes be more convenient to use 0 and 1 rather than and 1o. (Contributed by Jim Kingdon, 30-Aug-2023.)
(𝐴𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(∃𝑥𝐴 (𝑓𝑥) = 0 ∨ ∀𝑥𝐴 (𝑓𝑥) = 1)))
 
30-Aug-2023isomninnlem 13214 Lemma for isomninn 13215. The result, with a hypothesis to provide a convenient notation. (Contributed by Jim Kingdon, 30-Aug-2023.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)       (𝐴𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(∃𝑥𝐴 (𝑓𝑥) = 0 ∨ ∀𝑥𝐴 (𝑓𝑥) = 1)))
 
28-Aug-2023trilpolemisumle 13220 Lemma for trilpo 13225. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.)
(𝜑𝐹:ℕ⟶{0, 1})    &   𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℕ)       (𝜑 → Σ𝑖𝑍 ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ Σ𝑖𝑍 (1 / (2↑𝑖)))
 
25-Aug-2023cvgcmp2n 13217 A comparison test for convergence of a real infinite series. (Contributed by Jim Kingdon, 25-Aug-2023.)
((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))    &   ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (1 / (2↑𝑘)))       (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ )
 
25-Aug-2023cvgcmp2nlemabs 13216 Lemma for cvgcmp2n 13217. The partial sums get closer to each other as we go further out. The proof proceeds by rewriting (seq1( + , 𝐺)‘𝑁) as the sum of (seq1( + , 𝐺)‘𝑀) and a term which gets smaller as 𝑀 gets large. (Contributed by Jim Kingdon, 25-Aug-2023.)
((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))    &   ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (1 / (2↑𝑘)))    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ𝑀))       (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) < (2 / 𝑀))
 
24-Aug-2023trilpolemclim 13218 Lemma for trilpo 13225. Convergence of the series. (Contributed by Jim Kingdon, 24-Aug-2023.)
(𝜑𝐹:ℕ⟶{0, 1})    &   𝐺 = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))       (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ )
 
23-Aug-2023trilpo 13225 Real number trichotomy implies the Limited Principle of Omniscience (LPO). We expect that we'd need some form of countable choice to prove the converse.

Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence contains a zero or it is all ones.

Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. Compare it with one using trichotomy. The three cases from trichotomy are trilpolemlt1 13223 (which means the sequence contains a zero), trilpolemeq1 13222 (which means the sequence is all ones), and trilpolemgt1 13221 (which is not possible). (Contributed by Jim Kingdon, 23-Aug-2023.)

(∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ω ∈ Omni)
 
23-Aug-2023trilpolemres 13224 Lemma for trilpo 13225. The result. (Contributed by Jim Kingdon, 23-Aug-2023.)
(𝜑𝐹:ℕ⟶{0, 1})    &   𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))    &   (𝜑 → (𝐴 < 1 ∨ 𝐴 = 1 ∨ 1 < 𝐴))       (𝜑 → (∃𝑥 ∈ ℕ (𝐹𝑥) = 0 ∨ ∀𝑥 ∈ ℕ (𝐹𝑥) = 1))
 
23-Aug-2023trilpolemlt1 13223 Lemma for trilpo 13225. The 𝐴 < 1 case. We can use the distance between 𝐴 and one (that is, 1 − 𝐴) to find a position in the sequence 𝑛 where terms after that point will not add up to as much as 1 − 𝐴. By finomni 7005 we know the terms up to 𝑛 either contain a zero or are all one. But if they are all one that contradicts the way we constructed 𝑛, so we know that the sequence contains a zero. (Contributed by Jim Kingdon, 23-Aug-2023.)
(𝜑𝐹:ℕ⟶{0, 1})    &   𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))    &   (𝜑𝐴 < 1)       (𝜑 → ∃𝑥 ∈ ℕ (𝐹𝑥) = 0)
 
23-Aug-2023trilpolemeq1 13222 Lemma for trilpo 13225. The 𝐴 = 1 case. This is proved by noting that if any (𝐹𝑥) is zero, then the infinite sum 𝐴 is less than one based on the term which is zero. We are using the fact that the 𝐹 sequence is decidable (in the sense that each element is either zero or one). (Contributed by Jim Kingdon, 23-Aug-2023.)
(𝜑𝐹:ℕ⟶{0, 1})    &   𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))    &   (𝜑𝐴 = 1)       (𝜑 → ∀𝑥 ∈ ℕ (𝐹𝑥) = 1)
 
23-Aug-2023trilpolemgt1 13221 Lemma for trilpo 13225. The 1 < 𝐴 case. (Contributed by Jim Kingdon, 23-Aug-2023.)
(𝜑𝐹:ℕ⟶{0, 1})    &   𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))       (𝜑 → ¬ 1 < 𝐴)
 
23-Aug-2023trilpolemcl 13219 Lemma for trilpo 13225. The sum exists. (Contributed by Jim Kingdon, 23-Aug-2023.)
(𝜑𝐹:ℕ⟶{0, 1})    &   𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))       (𝜑𝐴 ∈ ℝ)
 
23-Aug-2023triap 13213 Two ways of stating real number trichotomy. (Contributed by Jim Kingdon, 23-Aug-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) ↔ DECID 𝐴 # 𝐵))
 
19-Aug-2023djuenun 7061 Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.)
((𝐴𝐵𝐶𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷))
 
16-Aug-2023ctssdclemr 6990 Lemma for ctssdc 6991. Showing that our usual definition of countable implies the alternate one. (Contributed by Jim Kingdon, 16-Aug-2023.)
(∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
 
16-Aug-2023ctssdclemn0 6988 Lemma for ctssdc 6991. The ¬ ∅ ∈ 𝑆 case. (Contributed by Jim Kingdon, 16-Aug-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   (𝜑 → ¬ ∅ ∈ 𝑆)       (𝜑 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
 
15-Aug-2023ctssexmid 7017 The decidability condition in ctssdc 6991 is needed. More specifically, ctssdc 6991 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.)
((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o))    &   ω ∈ Omni       (𝜑 ∨ ¬ 𝜑)
 
15-Aug-2023ctssdc 6991 A set is countable iff there is a surjection from a decidable subset of the natural numbers onto it. The decidability condition is needed as shown at ctssexmid 7017. (Contributed by Jim Kingdon, 15-Aug-2023.)
(∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠) ↔ ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
 
13-Aug-2023ltntri 7883 Negative trichotomy property for real numbers. It is well known that we cannot prove real number trichotomy, 𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴. Does that mean there is a pair of real numbers where none of those hold (that is, where we can refute each of those three relationships)? Actually, no, as shown here. This is another example of distinguishing between being unable to prove something, or being able to refute it. (Contributed by Jim Kingdon, 13-Aug-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 < 𝐴))
 
13-Aug-2023nfsbv 1918 If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑧 is distinct from 𝑥 and 𝑦. Version of nfsb 1917 requiring more disjoint variables. (Contributed by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on 𝑥, 𝑦. (Revised by Steven Nguyen, 13-Aug-2023.)
𝑧𝜑       𝑧[𝑦 / 𝑥]𝜑
 
11-Aug-2023qnnen 11933 The rational numbers are countably infinite. Corollary 8.1.23 of [AczelRathjen], p. 75. This is Metamath 100 proof #3. (Contributed by Jim Kingdon, 11-Aug-2023.)
ℚ ≈ ℕ
 
10-Aug-2023ctinfomlemom 11929 Lemma for ctinfom 11930. Converting between ω and 0. (Contributed by Jim Kingdon, 10-Aug-2023.)
𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐺 = (𝐹𝑁)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹𝑛))       (𝜑 → (𝐺:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖)))
 
9-Aug-2023difinfsnlem 6977 Lemma for difinfsn 6978. The case where we need to swap 𝐵 and (inr‘∅) in building the mapping 𝐺. (Contributed by Jim Kingdon, 9-Aug-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐵𝐴)    &   (𝜑𝐹:(ω ⊔ 1o)–1-1𝐴)    &   (𝜑 → (𝐹‘(inr‘∅)) ≠ 𝐵)    &   𝐺 = (𝑛 ∈ ω ↦ if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))))       (𝜑𝐺:ω–1-1→(𝐴 ∖ {𝐵}))
 
8-Aug-2023difinfinf 6979 An infinite set minus a finite subset is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
(((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵𝐴𝐵 ∈ Fin)) → ω ≼ (𝐴𝐵))
 
8-Aug-2023difinfsn 6978 An infinite set minus one element is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ (𝐴 ∖ {𝐵}))
 
7-Aug-2023ctinf 11932 A set is countably infinite if and only if it has decidable equality, is countable, and is infinite. (Contributed by Jim Kingdon, 7-Aug-2023.)
(𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴))
 
7-Aug-2023inffinp1 11931 An infinite set contains an element not contained in a given finite subset. (Contributed by Jim Kingdon, 7-Aug-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑 → ω ≼ 𝐴)    &   (𝜑𝐵𝐴)    &   (𝜑𝐵 ∈ Fin)       (𝜑 → ∃𝑥𝐴 ¬ 𝑥𝐵)
 
7-Aug-2023ctinfom 11930 A condition for a set being countably infinite. Restates ennnfone 11927 in terms of ω and function image. Like ennnfone 11927 the condition can be summarized as 𝐴 being countable, infinite, and having decidable equality. (Contributed by Jim Kingdon, 7-Aug-2023.)
(𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
 
6-Aug-2023rerestcntop 12708 The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Jim Kingdon, 6-Aug-2023.)
𝐽 = (MetOpen‘(abs ∘ − ))    &   𝑅 = (topGen‘ran (,))       (𝐴 ⊆ ℝ → (𝐽t 𝐴) = (𝑅t 𝐴))
 
6-Aug-2023tgioo2cntop 12707 The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Jim Kingdon, 6-Aug-2023.)
𝐽 = (MetOpen‘(abs ∘ − ))       (topGen‘ran (,)) = (𝐽t ℝ)
 
4-Aug-2023nninffeq 13205 Equality of two functions on which agree at every integer and at the point at infinity. From an online post by Martin Escardo. (Contributed by Jim Kingdon, 4-Aug-2023.)
(𝜑𝐹:ℕ⟶ℕ0)    &   (𝜑𝐺:ℕ⟶ℕ0)    &   (𝜑 → (𝐹‘(𝑥 ∈ ω ↦ 1o)) = (𝐺‘(𝑥 ∈ ω ↦ 1o)))    &   (𝜑 → ∀𝑛 ∈ ω (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))       (𝜑𝐹 = 𝐺)
 
3-Aug-2023txvalex 12412 Existence of the binary topological product. If 𝑅 and 𝑆 are known to be topologies, see txtop 12418. (Contributed by Jim Kingdon, 3-Aug-2023.)
((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) ∈ V)
 
3-Aug-2023dvdsgcdidd 11671 The greatest common divisor of a positive integer and another integer it divides is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑀𝑁)       (𝜑 → (𝑀 gcd 𝑁) = 𝑀)
 
3-Aug-2023gcdmultipled 11670 The greatest common divisor of a nonnegative integer 𝑀 and a multiple of it is 𝑀 itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝑀 gcd (𝑁 · 𝑀)) = 𝑀)
 
3-Aug-2023phpeqd 6814 Corollary of the Pigeonhole Principle using equality. Strengthening of phpm 6752 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐵𝐴)    &   (𝜑𝐴𝐵)       (𝜑𝐴 = 𝐵)
 
3-Aug-2023enpr2d 6704 A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)    &   (𝜑 → ¬ 𝐴 = 𝐵)       (𝜑 → {𝐴, 𝐵} ≈ 2o)
 
3-Aug-2023elrnmpt2d 4789 Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐹 = (𝑥𝐴𝐵)    &   (𝜑𝐶 ∈ ran 𝐹)       (𝜑 → ∃𝑥𝐴 𝐶 = 𝐵)
 
3-Aug-2023elrnmptdv 4788 Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐹 = (𝑥𝐴𝐵)    &   (𝜑𝐶𝐴)    &   (𝜑𝐷𝑉)    &   ((𝜑𝑥 = 𝐶) → 𝐷 = 𝐵)       (𝜑𝐷 ∈ ran 𝐹)
 
3-Aug-2023rspcime 2791 Prove a restricted existential. (Contributed by Rohan Ridenour, 3-Aug-2023.)
((𝜑𝑥 = 𝐴) → 𝜓)    &   (𝜑𝐴𝐵)       (𝜑 → ∃𝑥𝐵 𝜓)
 
3-Aug-2023neqcomd 2142 Commute an inequality. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑 → ¬ 𝐴 = 𝐵)       (𝜑 → ¬ 𝐵 = 𝐴)
 
2-Aug-2023dvid 12820 Derivative of the identity function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
(ℂ D ( I ↾ ℂ)) = (ℂ × {1})
 
2-Aug-2023dvconst 12819 Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
(𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
 
2-Aug-2023dvidlemap 12818 Lemma for dvid 12820 and dvconst 12819. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
(𝜑𝐹:ℂ⟶ℂ)    &   ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)    &   𝐵 ∈ ℂ       (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵}))
 
2-Aug-2023diveqap1bd 8588 If two complex numbers are equal, their quotient is one. One-way deduction form of diveqap1 8458. Converse of diveqap1d 8551. (Contributed by David Moews, 28-Feb-2017.) (Revised by Jim Kingdon, 2-Aug-2023.)
(𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐴 / 𝐵) = 1)
 
1-Aug-2023cnstab 8400 Equality of complex numbers is stable. Stability here means ¬ ¬ 𝐴 = 𝐵𝐴 = 𝐵 as defined at df-stab 816. This theorem for real numbers is Proposition 5.2 of [BauerHanson], p. 27. (Contributed by Jim Kingdon, 1-Aug-2023.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → STAB 𝐴 = 𝐵)
 
31-Jul-2023mul0inf 11005 Equality of a product with zero. A bit of a curiosity, in the sense that theorems like abs00ap 10827 and mulap0bd 8411 may better express the ideas behind it. (Contributed by Jim Kingdon, 31-Jul-2023.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) = 0))
 
31-Jul-2023mul0eqap 8424 If two numbers are apart from each other and their product is zero, one of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 𝐵)    &   (𝜑 → (𝐴 · 𝐵) = 0)       (𝜑 → (𝐴 = 0 ∨ 𝐵 = 0))
 
31-Jul-2023apcon4bid 8379 Contrapositive law deduction for apartness. (Contributed by Jim Kingdon, 31-Jul-2023.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑 → (𝐴 # 𝐵𝐶 # 𝐷))       (𝜑 → (𝐴 = 𝐵𝐶 = 𝐷))
 
30-Jul-2023uzennn 10202 An upper integer set is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 30-Jul-2023.)
(𝑀 ∈ ℤ → (ℤ𝑀) ≈ ℕ)
 
30-Jul-2023djuen 7060 Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.)
((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))
 
30-Jul-2023endjudisj 7059 Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.)
((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (𝐴𝐵))
 
30-Jul-2023eninr 6976 Equinumerosity of a set and its image under right injection. (Contributed by Jim Kingdon, 30-Jul-2023.)
(𝐴𝑉 → (inr “ 𝐴) ≈ 𝐴)
 
30-Jul-2023eninl 6975 Equinumerosity of a set and its image under left injection. (Contributed by Jim Kingdon, 30-Jul-2023.)
(𝐴𝑉 → (inl “ 𝐴) ≈ 𝐴)
 
29-Jul-2023exmidunben 11928 If any unbounded set of positive integers is equinumerous to , then the Limited Principle of Omniscience (LPO) implies excluded middle. (Contributed by Jim Kingdon, 29-Jul-2023.)
((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → EXMID)
 
29-Jul-2023exmidsssnc 4121 Excluded middle in terms of subsets of a singleton. This is similar to exmid01 4116 but lets you choose any set as the element of the singleton rather than just . It is similar to exmidsssn 4120 but for a particular set 𝐵 rather than all sets. (Contributed by Jim Kingdon, 29-Jul-2023.)
(𝐵𝑉 → (EXMID ↔ ∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵}))))
 
28-Jul-2023dvfcnpm 12817 The derivative is a function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jul-2023.)
(𝐹 ∈ (ℂ ↑pm ℂ) → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ)
 
28-Jul-2023dvfpm 12816 The derivative is a function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 28-Jul-2023.)
(𝐹 ∈ (ℂ ↑pm ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
 
23-Jul-2023ennnfonelemhdmp1 11911 Lemma for ennnfone 11927. Domain at a successor where we need to add an element to the sequence. (Contributed by Jim Kingdon, 23-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)    &   (𝜑 → ¬ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)))       (𝜑 → dom (𝐻‘(𝑃 + 1)) = suc dom (𝐻𝑃))
 
23-Jul-2023ennnfonelemp1 11908 Lemma for ennnfone 11927. Value of 𝐻 at a successor. (Contributed by Jim Kingdon, 23-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)       (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
 
22-Jul-2023nntr2 6392 Transitive law for natural numbers. (Contributed by Jim Kingdon, 22-Jul-2023.)
((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
 
22-Jul-2023nnsssuc 6391 A natural number is a subset of another natural number if and only if it belongs to its successor. (Contributed by Jim Kingdon, 22-Jul-2023.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 ∈ suc 𝐵))
 
21-Jul-2023ennnfoneleminc 11913 Lemma for ennnfone 11927. We only add elements to 𝐻 as the index increases. (Contributed by Jim Kingdon, 21-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)    &   (𝜑𝑄 ∈ ℕ0)    &   (𝜑𝑃𝑄)       (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑄))
 
20-Jul-2023ennnfonelemg 11905 Lemma for ennnfone 11927. Closure for 𝐺. (Contributed by Jim Kingdon, 20-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)       ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
 
20-Jul-2023ennnfonelemjn 11904 Lemma for ennnfone 11927. Non-initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)       ((𝜑𝑓 ∈ (ℤ‘(0 + 1))) → (𝐽𝑓) ∈ ω)
 
20-Jul-2023ennnfonelemj0 11903 Lemma for ennnfone 11927. Initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)       (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
 
20-Jul-2023seqp1cd 10232 Value of the sequence builder function at a successor. A version of seq3p1 10228 which provides two classes 𝐷 and 𝐶 for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 20-Jul-2023.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑 → (𝐹𝑀) ∈ 𝐶)    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)    &   ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)       (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
 
20-Jul-2023seqovcd 10229 A closure law for the recursive sequence builder. This is a lemma for theorems such as seqf2 10230 and seq1cd 10231 and is unlikely to be needed once such theorems are proved. (Contributed by Jim Kingdon, 20-Jul-2023.)
((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)       ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝐶)
 
19-Jul-2023ennnfonelemhom 11917 Lemma for ennnfone 11927. The sequences in 𝐻 increase in length without bound if you go out far enough. (Contributed by Jim Kingdon, 19-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑀 ∈ ω)       (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖))
 
19-Jul-2023ennnfonelemex 11916 Lemma for ennnfone 11927. Extending the sequence (𝐻𝑃) to include an additional element. (Contributed by Jim Kingdon, 19-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)       (𝜑 → ∃𝑖 ∈ ℕ0 dom (𝐻𝑃) ∈ dom (𝐻𝑖))
 
19-Jul-2023ennnfonelemkh 11914 Lemma for ennnfone 11927. Because we add zero or one entries for each new index, the length of each sequence is no greater than its index. (Contributed by Jim Kingdon, 19-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)       (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃))
 
19-Jul-2023ennnfonelemom 11910 Lemma for ennnfone 11927. 𝐻 yields finite sequences. (Contributed by Jim Kingdon, 19-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)       (𝜑 → dom (𝐻𝑃) ∈ ω)
 
19-Jul-2023ennnfonelem1 11909 Lemma for ennnfone 11927. Second value. (Contributed by Jim Kingdon, 19-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)       (𝜑 → (𝐻‘1) = {⟨∅, (𝐹‘∅)⟩})
 
19-Jul-2023seq1cd 10231 Initial value of the recursive sequence builder. A version of seq3-1 10226 which provides two classes 𝐷 and 𝐶 for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 19-Jul-2023.)
(𝜑 → (𝐹𝑀) ∈ 𝐶)    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
 
17-Jul-2023ennnfonelemhf1o 11915 Lemma for ennnfone 11927. Each of the functions in 𝐻 is one to one and onto an image of 𝐹. (Contributed by Jim Kingdon, 17-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)       (𝜑 → (𝐻𝑃):dom (𝐻𝑃)–1-1-onto→(𝐹 “ (𝑁𝑃)))
 
16-Jul-2023ennnfonelemen 11923 Lemma for ennnfone 11927. The result. (Contributed by Jim Kingdon, 16-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)       (𝜑𝐴 ≈ ℕ)
 
16-Jul-2023ennnfonelemdm 11922 Lemma for ennnfone 11927. The function 𝐿 is defined everywhere. (Contributed by Jim Kingdon, 16-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)       (𝜑 → dom 𝐿 = ω)
 
16-Jul-2023ennnfonelemrn 11921 Lemma for ennnfone 11927. 𝐿 is onto 𝐴. (Contributed by Jim Kingdon, 16-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)       (𝜑 → ran 𝐿 = 𝐴)
 
16-Jul-2023ennnfonelemf1 11920 Lemma for ennnfone 11927. 𝐿 is one-to-one. (Contributed by Jim Kingdon, 16-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)       (𝜑𝐿:dom 𝐿1-1𝐴)
 
16-Jul-2023ennnfonelemfun 11919 Lemma for ennnfone 11927. 𝐿 is a function. (Contributed by Jim Kingdon, 16-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)       (𝜑 → Fun 𝐿)
 
16-Jul-2023ennnfonelemrnh 11918 Lemma for ennnfone 11927. A consequence of ennnfonelemss 11912. (Contributed by Jim Kingdon, 16-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑋 ∈ ran 𝐻)    &   (𝜑𝑌 ∈ ran 𝐻)       (𝜑 → (𝑋𝑌𝑌𝑋))
 
15-Jul-2023ennnfonelemss 11912 Lemma for ennnfone 11927. We only add elements to 𝐻 as the index increases. (Contributed by Jim Kingdon, 15-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)       (𝜑 → (𝐻𝑃) ⊆ (𝐻‘(𝑃 + 1)))
 
15-Jul-2023ennnfonelem0 11907 Lemma for ennnfone 11927. Initial value. (Contributed by Jim Kingdon, 15-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)       (𝜑 → (𝐻‘0) = ∅)
 
15-Jul-2023ennnfonelemk 11902 Lemma for ennnfone 11927. (Contributed by Jim Kingdon, 15-Jul-2023.)
(𝜑𝐹:ω–onto𝐴)    &   (𝜑𝐾 ∈ ω)    &   (𝜑𝑁 ∈ ω)    &   (𝜑 → ∀𝑗 ∈ suc 𝑁(𝐹𝐾) ≠ (𝐹𝑗))       (𝜑𝑁𝐾)
 
15-Jul-2023ennnfonelemdc 11901 Lemma for ennnfone 11927. A direct consequence of fidcenumlemrk 6835. (Contributed by Jim Kingdon, 15-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑𝑃 ∈ ω)       (𝜑DECID (𝐹𝑃) ∈ (𝐹𝑃))
 
14-Jul-2023djur 6947 A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) Upgrade implication to biconditional and shorten proof. (Revised by BJ, 14-Jul-2023.)
(𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥𝐵 𝐶 = (inr‘𝑥)))
 
13-Jul-2023sbthomlem 13209 Lemma for sbthom 13210. (Contributed by Mario Carneiro and Jim Kingdon, 13-Jul-2023.)
(𝜑 → ω ∈ Omni)    &   (𝜑𝑌 ⊆ {∅})    &   (𝜑𝐹:ω–1-1-onto→(𝑌 ⊔ ω))       (𝜑 → (𝑌 = ∅ ∨ 𝑌 = {∅}))
 
12-Jul-2023caseinr 6970 Applying the "case" construction to a right injection. (Contributed by Jim Kingdon, 12-Jul-2023.)
(𝜑 → Fun 𝐹)    &   (𝜑𝐺 Fn 𝐵)    &   (𝜑𝐴𝐵)       (𝜑 → (case(𝐹, 𝐺)‘(inr‘𝐴)) = (𝐺𝐴))
 
12-Jul-2023inl11 6943 Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.)
((𝐴𝑉𝐵𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 𝐴 = 𝐵))
 
11-Jul-2023djudomr 7069 A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
((𝐴𝑉𝐵𝑊) → 𝐵 ≼ (𝐴𝐵))
 
11-Jul-2023djudoml 7068 A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
((𝐴𝑉𝐵𝑊) → 𝐴 ≼ (𝐴𝐵))
 
11-Jul-2023omp1eomlem 6972 Lemma for omp1eom 6973. (Contributed by Jim Kingdon, 11-Jul-2023.)
𝐹 = (𝑥 ∈ ω ↦ if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)))    &   𝑆 = (𝑥 ∈ ω ↦ suc 𝑥)    &   𝐺 = case(𝑆, ( I ↾ 1o))       𝐹:ω–1-1-onto→(ω ⊔ 1o)
 
11-Jul-2023xp01disjl 6324 Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.)
(({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅
 
10-Jul-2023sbthom 13210 Schroeder-Bernstein is not possible even for ω. We know by exmidsbth 13208 that full Schroeder-Bernstein will not be provable but what about the case where one of the sets is ω? That case plus the Limited Principle of Omniscience (LPO) implies excluded middle, so we will not be able to prove it. (Contributed by Mario Carneiro and Jim Kingdon, 10-Jul-2023.)
((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) → EXMID)
 
10-Jul-2023endjusym 6974 Reversing right and left operands of a disjoint union produces an equinumerous result. (Contributed by Jim Kingdon, 10-Jul-2023.)
((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))
 
10-Jul-2023omp1eom 6973 Adding one to ω. (Contributed by Jim Kingdon, 10-Jul-2023.)
(ω ⊔ 1o) ≈ ω
 
9-Jul-2023refeq 13212 Equality of two real functions which agree at negative numbers, positive numbers, and zero. This holds even without real trichotomy. From an online post by Martin Escardo. (Contributed by Jim Kingdon, 9-Jul-2023.)
(𝜑𝐹:ℝ⟶ℝ)    &   (𝜑𝐺:ℝ⟶ℝ)    &   (𝜑 → ∀𝑥 ∈ ℝ (𝑥 < 0 → (𝐹𝑥) = (𝐺𝑥)))    &   (𝜑 → ∀𝑥 ∈ ℝ (0 < 𝑥 → (𝐹𝑥) = (𝐺𝑥)))    &   (𝜑 → (𝐹‘0) = (𝐺‘0))       (𝜑𝐹 = 𝐺)
 
9-Jul-2023seqvalcd 10225 Value of the sequence builder function. Similar to seq3val 10224 but the classes 𝐷 (type of each term) and 𝐶 (type of the value we are accumulating) do not need to be the same. (Contributed by Jim Kingdon, 9-Jul-2023.)
(𝜑𝑀 ∈ ℤ)    &   𝑅 = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)    &   (𝜑 → (𝐹𝑀) ∈ 𝐶)    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)    &   ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)       (𝜑 → seq𝑀( + , 𝐹) = ran 𝑅)
 
9-Jul-2023djuun 6945 The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 9-Jul-2023.)
((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴𝐵)
 
9-Jul-2023djuin 6942 The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.) (Proof shortened by BJ, 9-Jul-2023.)
((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅
 
8-Jul-2023limcimo 12792 Conditions which ensure there is at most one limit value of 𝐹 at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 8-Jul-2023.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵𝐶)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶 ∈ (𝐾t 𝑆))    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)    &   𝐾 = (MetOpen‘(abs ∘ − ))       (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 lim 𝐵))
 
8-Jul-2023ennnfonelemh 11906 Lemma for ennnfone 11927. (Contributed by Jim Kingdon, 8-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)       (𝜑𝐻:ℕ0⟶(𝐴pm ω))
 
7-Jul-2023seqf2 10230 Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 7-Jul-2023.)
(𝜑 → (𝐹𝑀) ∈ 𝐶)    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)       (𝜑 → seq𝑀( + , 𝐹):𝑍𝐶)
 
3-Jul-2023limcimolemlt 12791 Lemma for limcimo 12792. (Contributed by Jim Kingdon, 3-Jul-2023.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵𝐶)    &   (𝜑𝐵𝑆)    &   (𝜑𝐶 ∈ (𝐾t 𝑆))    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   (𝜑𝐷 ∈ ℝ+)    &   (𝜑𝑋 ∈ (𝐹 lim 𝐵))    &   (𝜑𝑌 ∈ (𝐹 lim 𝐵))    &   (𝜑 → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝐷) → (abs‘((𝐹𝑧) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2)))    &   (𝜑𝐺 ∈ ℝ+)    &   (𝜑 → ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝐺) → (abs‘((𝐹𝑤) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2)))       (𝜑 → (abs‘(𝑋𝑌)) < (abs‘(𝑋𝑌)))
 
28-Jun-2023dvfgg 12815 Explicitly write out the functionality condition on derivative for 𝑆 = ℝ and . (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jun-2023.)
((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
 
28-Jun-2023dvbsssg 12813 The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015.) (Revised by Jim Kingdon, 28-Jun-2023.)
((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom (𝑆 D 𝐹) ⊆ 𝑆)
 
27-Jun-2023dvbssntrcntop 12811 The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴𝑆)    &   𝐽 = (𝐾t 𝑆)    &   𝐾 = (MetOpen‘(abs ∘ − ))       (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘𝐽)‘𝐴))
 
27-Jun-2023eldvap 12809 The differentiable predicate. A function 𝐹 is differentiable at 𝐵 with derivative 𝐶 iff 𝐹 is defined in a neighborhood of 𝐵 and the difference quotient has limit 𝐶 at 𝐵. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
𝑇 = (𝐾t 𝑆)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐺 = (𝑧 ∈ {𝑤𝐴𝑤 # 𝐵} ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)))    &   (𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴𝑆)       (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 lim 𝐵))))
 
27-Jun-2023dvfvalap 12808 Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
𝑇 = (𝐾t 𝑆)    &   𝐾 = (MetOpen‘(abs ∘ − ))       ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → ((𝑆 D 𝐹) = 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ)))
 
27-Jun-2023dvlemap 12807 Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
(𝜑𝐹:𝐷⟶ℂ)    &   (𝜑𝐷 ⊆ ℂ)    &   (𝜑𝐵𝐷)       ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)
 
25-Jun-2023reldvg 12806 The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.)
((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹))
 
25-Jun-2023df-dvap 12784 Define the derivative operator. This acts on functions to produce a function that is defined where the original function is differentiable, with value the derivative of the function at these points. The set 𝑠 here is the ambient topological space under which we are evaluating the continuity of the difference quotient. Although the definition is valid for any subset of and is well-behaved when 𝑠 contains no isolated points, we will restrict our attention to the cases 𝑠 = ℝ or 𝑠 = ℂ for the majority of the development, these corresponding respectively to real and complex differentiation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.)
D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓𝑤 # 𝑥} ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
 
18-Jun-2023limccnpcntop 12802 If the limit of 𝐹 at 𝐵 is 𝐶 and 𝐺 is continuous at 𝐶, then the limit of 𝐺𝐹 at 𝐵 is 𝐺(𝐶). (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 18-Jun-2023.)
(𝜑𝐹:𝐴𝐷)    &   (𝜑𝐷 ⊆ ℂ)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = (𝐾t 𝐷)    &   (𝜑𝐶 ∈ (𝐹 lim 𝐵))    &   (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))       (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))
 
17-Jun-2023r19.28v 2558 Restricted quantifier version of one direction of 19.28 1542. (The other direction holds when 𝐴 is inhabited, see r19.28mv 3450.) (Contributed by NM, 2-Apr-2004.) (Proof shortened by Wolf Lammen, 17-Jun-2023.)
((𝜑 ∧ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
 
17-Jun-2023r19.27v 2557 Restricted quantitifer version of one direction of 19.27 1540. (The other direction holds when 𝐴 is inhabited, see r19.27mv 3454.) (Contributed by NM, 3-Jun-2004.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 17-Jun-2023.)
((∀𝑥𝐴 𝜑𝜓) → ∀𝑥𝐴 (𝜑𝜓))
 
16-Jun-2023cnlimcim 12798 If 𝐹 is a continuous function, the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 16-Jun-2023.)
(𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴cn→ℂ) → (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ (𝐹 lim 𝑥))))
 
16-Jun-2023cncfcn1cntop 12739 Relate complex function continuity to topological continuity. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.) (Revised by Jim Kingdon, 16-Jun-2023.)
𝐽 = (MetOpen‘(abs ∘ − ))       (ℂ–cn→ℂ) = (𝐽 Cn 𝐽)
 
14-Jun-2023cnplimcim 12794 If a function is continuous at 𝐵, its limit at 𝐵 equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Jun-2023.)
𝐾 = (MetOpen‘(abs ∘ − ))    &   𝐽 = (𝐾t 𝐴)       ((𝐴 ⊆ ℂ ∧ 𝐵𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → (𝐹:𝐴⟶ℂ ∧ (𝐹𝐵) ∈ (𝐹 lim 𝐵))))
 
14-Jun-2023metcnpd 12678 Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous at point 𝑃. (Contributed by Jim Kingdon, 14-Jun-2023.)
(𝜑𝐽 = (MetOpen‘𝐶))    &   (𝜑𝐾 = (MetOpen‘𝐷))    &   (𝜑𝐶 ∈ (∞Met‘𝑋))    &   (𝜑𝐷 ∈ (∞Met‘𝑌))    &   (𝜑𝑃𝑋)       (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
 
6-Jun-2023cntoptop 12691 The topology of the complex numbers is a topology. (Contributed by Jim Kingdon, 6-Jun-2023.)
𝐽 = (MetOpen‘(abs ∘ − ))       𝐽 ∈ Top
 
6-Jun-2023cntoptopon 12690 The topology of the complex numbers is a topology. (Contributed by Jim Kingdon, 6-Jun-2023.)
𝐽 = (MetOpen‘(abs ∘ − ))       𝐽 ∈ (TopOn‘ℂ)
 
3-Jun-2023limcdifap 12789 It suffices to consider functions which are not defined at 𝐵 to define the limit of a function. In particular, the value of the original function 𝐹 at 𝐵 does not affect the limit of 𝐹. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 3-Jun-2023.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)       (𝜑 → (𝐹 lim 𝐵) = ((𝐹 ↾ {𝑥𝐴𝑥 # 𝐵}) lim 𝐵))
 
3-Jun-2023ellimc3ap 12788 Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) Use apartness. (Revised by Jim Kingdon, 3-Jun-2023.)
(𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴 ⊆ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
 
3-Jun-2023df-limced 12783 Define the set of limits of a complex function at a point. Under normal circumstances, this will be a singleton or empty, depending on whether the limit exists. (Contributed by Mario Carneiro, 24-Dec-2016.) (Revised by Jim Kingdon, 3-Jun-2023.)
lim = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∈ ℂ ∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧𝑥)) < 𝑑) → (abs‘((𝑓𝑧) − 𝑦)) < 𝑒)))})
 
29-May-2023mulcncflem 12748 Lemma for mulcncf 12749. (Contributed by Jim Kingdon, 29-May-2023.)
(𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))    &   (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))    &   (𝜑𝑉𝑋)    &   (𝜑𝐸 ∈ ℝ+)    &   (𝜑𝐹 ∈ ℝ+)    &   (𝜑𝐺 ∈ ℝ+)    &   (𝜑𝑆 ∈ ℝ+)    &   (𝜑𝑇 ∈ ℝ+)    &   (𝜑 → ∀𝑢𝑋 ((abs‘(𝑢𝑉)) < 𝑆 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑉))) < 𝐹))    &   (𝜑 → ∀𝑢𝑋 ((abs‘(𝑢𝑉)) < 𝑇 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑉))) < 𝐺))    &   (𝜑 → ∀𝑢𝑋 (((abs‘(𝑢 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹 ∧ (abs‘(𝑢 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺) → (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))) < 𝐸))       (𝜑 → ∃𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑉)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸))
 
26-May-2023cdivcncfap 12745 Division with a constant numerator is continuous. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 26-May-2023.)
𝐹 = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥))       (𝐴 ∈ ℂ → 𝐹 ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
 
26-May-2023reccn2ap 11075 The reciprocal function is continuous. The class 𝑇 is just for convenience in writing the proof and typically would be passed in as an instance of eqid 2137. (Contributed by Mario Carneiro, 9-Feb-2014.) Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
𝑇 = (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2))       ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
 
23-May-2023iooretopg 12686 Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) (Revised by Jim Kingdon, 23-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
 
23-May-2023minclpr 11001 The minimum of two real numbers is one of those numbers if and only if dichotomy (𝐴𝐵𝐵𝐴) holds. For example, this can be combined with zletric 9091 if one is dealing with integers, but real number dichotomy in general does not follow from our axioms. (Contributed by Jim Kingdon, 23-May-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (inf({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (𝐴𝐵𝐵𝐴)))
 
22-May-2023qtopbasss 12679 The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Jim Kingdon, 22-May-2023.)
𝑆 ⊆ ℝ*    &   ((𝑥𝑆𝑦𝑆) → sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)    &   ((𝑥𝑆𝑦𝑆) → inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)       ((,) “ (𝑆 × 𝑆)) ∈ TopBases
 
22-May-2023iooinsup 11039 Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 22-May-2023.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = (sup({𝐴, 𝐶}, ℝ*, < )(,)inf({𝐵, 𝐷}, ℝ*, < )))
 
21-May-2023df-sumdc 11116 Define the sum of a series with an index set of integers 𝐴. 𝑘 is normally a free variable in 𝐵, i.e. 𝐵 can be thought of as 𝐵(𝑘). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. In both cases we have an if expression so that we only need 𝐵 to be defined where 𝑘𝐴. In the infinite case, we also require that the indexing set be a decidable subset of an upperset of integers (that is, membership of integers in it is decidable). These two methods of summation produce the same result on their common region of definition (i.e. finite sets of integers). Examples: Σ𝑘 ∈ {1, 2, 4} 𝑘 means 1 + 2 + 4 = 7, and Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 11284). (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 21-May-2023.)
Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
 
19-May-2023bdmopn 12662 The standard bounded metric corresponding to 𝐶 generates the same topology as 𝐶. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))    &   𝐽 = (MetOpen‘𝐶)       ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
 
19-May-2023bdbl 12661 The standard bounded metric corresponding to 𝐶 generates the same balls as 𝐶 for radii less than 𝑅. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))       (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑃𝑋𝑆 ∈ ℝ*𝑆𝑅)) → (𝑃(ball‘𝐷)𝑆) = (𝑃(ball‘𝐶)𝑆))
 
19-May-2023bdmet 12660 The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))       ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋))
 
19-May-2023xrminltinf 11034 Two ways of saying an extended real is greater than the minimum of two others. (Contributed by Jim Kingdon, 19-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (inf({𝐵, 𝐶}, ℝ*, < ) < 𝐴 ↔ (𝐵 < 𝐴𝐶 < 𝐴)))
 
18-May-2023xrminrecl 11035 The minimum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 18-May-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ*, < ) = inf({𝐴, 𝐵}, ℝ, < ))
 
18-May-2023ralnex2 2569 Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 18-May-2023.)
(∀𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴𝑦𝐵 𝜑)
 
17-May-2023bdtrilem 11003 Lemma for bdtri 11004. (Contributed by Steven Nguyen and Jim Kingdon, 17-May-2023.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶))))
 
15-May-2023xrbdtri 11038 Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
(((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) ≤ (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
 
15-May-2023bdtri 11004 Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) ≤ (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )))
 
15-May-2023minabs 11000 The minimum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 15-May-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2))
 
11-May-2023xrmaxadd 11023 Distributing addition over maximum. (Contributed by Jim Kingdon, 11-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
 
11-May-2023xrmaxaddlem 11022 Lemma for xrmaxadd 11023. The case where 𝐴 is real. (Contributed by Jim Kingdon, 11-May-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → sup({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 sup({𝐵, 𝐶}, ℝ*, < )))
 
10-May-2023xrminadd 11037 Distributing addition over minimum. (Contributed by Jim Kingdon, 10-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → inf({(𝐴 +𝑒 𝐵), (𝐴 +𝑒 𝐶)}, ℝ*, < ) = (𝐴 +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
 
10-May-2023xrmaxlesup 11021 Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 10-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) ≤ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
 
10-May-2023xrltmaxsup 11019 The maximum as a least upper bound. (Contributed by Jim Kingdon, 10-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 < sup({𝐴, 𝐵}, ℝ*, < ) ↔ (𝐶 < 𝐴𝐶 < 𝐵)))
 
9-May-2023bdxmet 12659 The standard bounded metric is an extended metric given an extended metric and a positive extended real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))       ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋))
 
9-May-2023bdmetval 12658 Value of the standard bounded metric. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))       (((𝐶:(𝑋 × 𝑋)⟶ℝ*𝑅 ∈ ℝ*) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) = inf({(𝐴𝐶𝐵), 𝑅}, ℝ*, < ))
 
7-May-2023setsmstsetg 12639 The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Revised by Jim Kingdon, 7-May-2023.)
(𝜑𝑋 = (Base‘𝑀))    &   (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))    &   (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))    &   (𝜑𝑀𝑉)    &   (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)       (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾))
 
6-May-2023dsslid 12108 Slot property of dist. (Contributed by Jim Kingdon, 6-May-2023.)
(dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ)
 
5-May-2023mopnrel 12599 The class of open sets of a metric space is a relation. (Contributed by Jim Kingdon, 5-May-2023.)
Rel MetOpen
 
5-May-2023fsumsersdc 11157 Special case of series sum over a finite upper integer index set. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Jim Kingdon, 5-May-2023.)
((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝐴 ⊆ (𝑀...𝑁))       (𝜑 → Σ𝑘𝐴 𝐵 = (seq𝑀( + , 𝐹)‘𝑁))
 
4-May-2023blex 12545 A ball is a set. (Contributed by Jim Kingdon, 4-May-2023.)
(𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) ∈ V)
 
4-May-2023summodc 11145 A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))    &   𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))       (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))))
 
4-May-2023summodclem2 11144 Lemma for summodc 11145. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))       ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
 
4-May-2023xrminrpcl 11036 The minimum of two positive reals is a positive real. (Contributed by Jim Kingdon, 4-May-2023.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → inf({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ+)
 
4-May-2023xrlemininf 11033 Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 4-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ*, < ) ↔ (𝐴𝐵𝐴𝐶)))
 
3-May-2023xrltmininf 11032 Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 3-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < inf({𝐵, 𝐶}, ℝ*, < ) ↔ (𝐴 < 𝐵𝐴 < 𝐶)))
 
3-May-2023xrmineqinf 11031 The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) (Revised by Jim Kingdon, 3-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐴) → inf({𝐴, 𝐵}, ℝ*, < ) = 𝐵)
 
3-May-2023xrmin2inf 11030 The minimum of two extended reals is less than or equal to the second. (Contributed by Jim Kingdon, 3-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) ≤ 𝐵)
 
3-May-2023xrmin1inf 11029 The minimum of two extended reals is less than or equal to the first. (Contributed by Jim Kingdon, 3-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) ≤ 𝐴)
 
3-May-2023xrmincl 11028 The minumum of two extended reals is an extended real. (Contributed by Jim Kingdon, 3-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ*)
 
2-May-2023xrminmax 11027 Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 2-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
 
2-May-2023xrnegcon1d 11026 Contraposition law for extended real unary minus. (Contributed by Jim Kingdon, 2-May-2023.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)       (𝜑 → (-𝑒𝐴 = 𝐵 ↔ -𝑒𝐵 = 𝐴))
 
2-May-2023infxrnegsupex 11025 The infimum of a set of extended reals 𝐴 is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 2-May-2023.)
(𝜑 → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))    &   (𝜑𝐴 ⊆ ℝ*)       (𝜑 → inf(𝐴, ℝ*, < ) = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧𝐴}, ℝ*, < ))
 
2-May-2023xrnegiso 11024 Negation is an order anti-isomorphism of the extended reals, which is its own inverse. (Contributed by Jim Kingdon, 2-May-2023.)
𝐹 = (𝑥 ∈ ℝ* ↦ -𝑒𝑥)       (𝐹 Isom < , < (ℝ*, ℝ*) ∧ 𝐹 = 𝐹)
 
30-Apr-2023xrmaxltsup 11020 Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
 
30-Apr-2023xrmaxrecl 11017 The maximum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 30-Apr-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ, < ))
 
30-Apr-2023xrmax2sup 11016 An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 30-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
 
30-Apr-2023xrmax1sup 11015 An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 30-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
 
29-Apr-2023xrmaxcl 11014 The maximum of two extended reals is an extended real. (Contributed by Jim Kingdon, 29-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ*)
 
29-Apr-2023xrmaxiflemval 11012 Lemma for xrmaxif 11013. Value of the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
𝑀 = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))       ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑀 ∈ ℝ* ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)))
 
29-Apr-2023xrmaxiflemcom 11011 Lemma for xrmaxif 11013. Commutativity of an expression which we will later show to be the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))
 
29-Apr-2023xrmaxiflemcl 11007 Lemma for xrmaxif 11013. Closure. (Contributed by Jim Kingdon, 29-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈ ℝ*)
 
29-Apr-2023sbco2v 1919 Version of sbco2 1936 with disjoint variable conditions. (Contributed by Wolf Lammen, 29-Apr-2023.)
𝑧𝜑       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
28-Apr-2023xrmaxiflemlub 11010 Lemma for xrmaxif 11013. A least upper bound for {𝐴, 𝐵}. (Contributed by Jim Kingdon, 28-Apr-2023.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ*)    &   (𝜑𝐶 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))       (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))
 
26-Apr-2023xrmaxif 11013 Maximum of two extended reals in terms of if expressions. (Contributed by Jim Kingdon, 26-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({𝐴, 𝐵}, ℝ*, < ) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
 
26-Apr-2023xrmaxiflemab 11009 Lemma for xrmaxif 11013. A variation of xrmaxleim 11006- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 26-Apr-2023.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐴 < 𝐵)       (𝜑 → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = 𝐵)
 
26-Apr-2023xrmaxifle 11008 An upper bound for {𝐴, 𝐵} in the extended reals. (Contributed by Jim Kingdon, 26-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
 
25-Apr-2023xrmaxleim 11006 Value of maximum when we know which extended real is larger. (Contributed by Jim Kingdon, 25-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵))
 
25-Apr-2023rpmincl 11002 The minumum of two positive real numbers is a positive real number. (Contributed by Jim Kingdon, 25-Apr-2023.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → inf({𝐴, 𝐵}, ℝ, < ) ∈ ℝ+)
 
25-Apr-2023mincl 10995 The minumum of two real numbers is a real number. (Contributed by Jim Kingdon, 25-Apr-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
 
24-Apr-2023psmetrel 12480 The class of pseudometrics is a relation. (Contributed by Jim Kingdon, 24-Apr-2023.)
Rel PsMet
 
23-Apr-2023bcval5 10502 Write out the top and bottom parts of the binomial coefficient (𝑁C𝐾) = (𝑁 · (𝑁 − 1) · ... · ((𝑁𝐾) + 1)) / 𝐾! explicitly. In this form, it is valid even for 𝑁 < 𝐾, although it is no longer valid for nonpositive 𝐾. (Contributed by Mario Carneiro, 22-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
 
23-Apr-2023ser3le 10284 Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Jim Kingdon, 23-Apr-2023.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ≤ (𝐺𝑘))       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁))
 
23-Apr-2023seq3z 10277 If the operation + has an absorbing element 𝑍 (a.k.a. zero element), then any sequence containing a 𝑍 evaluates to 𝑍. (Contributed by Mario Carneiro, 27-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑍)    &   ((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑍)    &   (𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑 → (𝐹𝐾) = 𝑍)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
 
23-Apr-2023seq3caopr 10249 The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 23-Apr-2023.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁)))
 
23-Apr-2023seq3caopr2 10248 The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)    &   ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))
 
22-Apr-2023ser3sub 10272 The difference of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) − (seq𝑀( + , 𝐺)‘𝑁)))
 
22-Apr-2023seq3caopr3 10247 Lemma for seq3caopr2 10248. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by Jim Kingdon, 22-Apr-2023.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))    &   ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))
 
22-Apr-2023ser3mono 10244 The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.)
(𝜑𝐾 ∈ (ℤ𝑀))    &   (𝜑𝑁 ∈ (ℤ𝐾))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℝ)    &   ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹𝑥))       (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁))
 
21-Apr-2023metrtri 12535 Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 21-Apr-2023.)
((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵))
 
21-Apr-2023sqxpeq0 4957 A Cartesian square is empty iff its member is empty. (Contributed by Jim Kingdon, 21-Apr-2023.)
((𝐴 × 𝐴) = ∅ ↔ 𝐴 = ∅)
 
20-Apr-2023xmetrel 12501 The class of extended metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
Rel ∞Met
 
20-Apr-2023metrel 12500 The class of metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
Rel Met
 
19-Apr-2023psmetge0 12489 The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.) (Revised by Jim Kingdon, 19-Apr-2023.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
 
18-Apr-2023xleaddadd 9663 Cancelling a factor of two in (expressed as addition rather than as a factor to avoid extended real multiplication). (Contributed by Jim Kingdon, 18-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵)))
 
17-Apr-2023xposdif 9658 Extended real version of posdif 8210. (Contributed by Mario Carneiro, 24-Aug-2015.) (Revised by Jim Kingdon, 17-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))
 
17-Apr-2023nmnfgt 9594 An extended real is greater than minus infinite iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.)
(𝐴 ∈ ℝ* → (-∞ < 𝐴𝐴 ≠ -∞))
 
17-Apr-2023npnflt 9591 An extended real is less than plus infinity iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.)
(𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞))
 
16-Apr-2023xltadd1 9652 Extended real version of ltadd1 8184. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Jim Kingdon, 16-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
 
13-Apr-2023xrmnfdc 9619 An extended real is or is not minus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
(𝐴 ∈ ℝ*DECID 𝐴 = -∞)
 
13-Apr-2023xrpnfdc 9618 An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
(𝐴 ∈ ℝ*DECID 𝐴 = +∞)
 
11-Apr-2023dmxpid 4755 The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.) (Revised by Jim Kingdon, 11-Apr-2023.)
dom (𝐴 × 𝐴) = 𝐴
 
9-Apr-2023isumz 11151 Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
(((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
 
9-Apr-2023summodclem2a 11143 Lemma for summodc 11145. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))    &   𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛𝑁, (𝐾𝑛) / 𝑘𝐵, 0))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   (𝜑𝑓:(1...𝑁)–1-1-onto𝐴)    &   (𝜑𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴))       (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑁))
 
9-Apr-2023summodclem3 11142 Lemma for summodc 11145. (Contributed by Mario Carneiro, 29-Mar-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))    &   (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)    &   (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)    &   𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0))    &   𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛𝑁, (𝐾𝑛) / 𝑘𝐵, 0))       (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , 𝐻)‘𝑁))
 
9-Apr-2023sumrbdc 11140 Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   (𝜑𝐴 ⊆ (ℤ𝑁))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   ((𝜑𝑘 ∈ (ℤ𝑁)) → DECID 𝑘𝐴)       (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
 
9-Apr-2023seq3coll 10578 The function 𝐹 contains a sparse set of nonzero values to be summed. The function 𝐺 is an order isomorphism from the set of nonzero values of 𝐹 to a 1-based finite sequence, and 𝐻 collects these nonzero values together. Under these conditions, the sum over the values in 𝐻 yields the same result as the sum over the original set 𝐹. (Contributed by Mario Carneiro, 2-Apr-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
((𝜑𝑘𝑆) → (𝑍 + 𝑘) = 𝑘)    &   ((𝜑𝑘𝑆) → (𝑘 + 𝑍) = 𝑘)    &   ((𝜑 ∧ (𝑘𝑆𝑛𝑆)) → (𝑘 + 𝑛) ∈ 𝑆)    &   (𝜑𝑍𝑆)    &   (𝜑𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴))    &   (𝜑𝑁 ∈ (1...(♯‘𝐴)))    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ‘1)) → (𝐻𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹𝑘) = 𝑍)    &   ((𝜑𝑛 ∈ (1...(♯‘𝐴))) → (𝐻𝑛) = (𝐹‘(𝐺𝑛)))       (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺𝑁)) = (seq1( + , 𝐻)‘𝑁))
 
8-Apr-2023zsumdc 11146 Series sum with index set a subset of the upper integers. (Contributed by Mario Carneiro, 13-Jun-2019.) (Revised by Jim Kingdon, 8-Apr-2023.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))    &   (𝜑 → ∀𝑥𝑍 DECID 𝑥𝐴)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → Σ𝑘𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
 
8-Apr-2023sumrbdclem 11138 Lemma for sumrbdc 11140. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝑁 ∈ (ℤ𝑀))       ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
 
8-Apr-2023isermulc2 11102 Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007.) (Revised by Jim Kingdon, 8-Apr-2023.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 · (𝐹𝑘)))       (𝜑 → seq𝑀( + , 𝐺) ⇝ (𝐶 · 𝐴))
 
8-Apr-2023seq3id 10274 Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for +) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑥)    &   (𝜑𝑍𝑆)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑 → (𝐹𝑁) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
 
8-Apr-2023seq3id3 10273 A sequence that consists entirely of "zeroes" sums to "zero". More precisely, a constant sequence with value an element which is a + -idempotent sums (or "+'s") to that element. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Jim Kingdon, 8-Apr-2023.)
(𝜑 → (𝑍 + 𝑍) = 𝑍)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = 𝑍)    &   (𝜑𝑍𝑆)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
 
7-Apr-2023seq3shft2 10239 Shifting the index set of a sequence. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐾 ∈ ℤ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝐺𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))
 
7-Apr-2023seq3feq 10238 Equality of sequences. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.)
(𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐺𝑘))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺))
 
7-Apr-2023r19.2m 3444 Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1617). The restricted version is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) (Revised by Jim Kingdon, 7-Apr-2023.)
((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝜑) → ∃𝑥𝐴 𝜑)
 
6-Apr-2023lmtopcnp 12408 The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.) (Revised by Jim Kingdon, 6-Apr-2023.)
(𝜑𝐹(⇝𝑡𝐽)𝑃)    &   (𝜑𝐾 ∈ Top)    &   (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃))       (𝜑 → (𝐺𝐹)(⇝𝑡𝐾)(𝐺𝑃))
 
6-Apr-2023cnptoprest2 12398 Equivalence of point-continuity in the parent topology and point-continuity in a subspace. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 6-Apr-2023.)
𝑋 = 𝐽    &   𝑌 = 𝐾       (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋𝐵𝐵𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃)))
 
5-Apr-2023cnptoprest 12397 Equivalence of continuity at a point and continuity of the restricted function at a point. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 5-Apr-2023.)
𝑋 = 𝐽    &   𝑌 = 𝐾       (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃)))
 
4-Apr-2023exmidmp 7024 Excluded middle implies Markov's Principle (MP). (Contributed by Jim Kingdon, 4-Apr-2023.)
(EXMID → ω ∈ Markov)
 
2-Apr-2023sup3exmid 8708 If any inhabited set of real numbers bounded from above has a supremum, excluded middle follows. (Contributed by Jim Kingdon, 2-Apr-2023.)
((𝑢 ⊆ ℝ ∧ ∃𝑤 𝑤𝑢 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝑢 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝑢 𝑦 < 𝑧)))       DECID 𝜑
 
31-Mar-2023cnptopresti 12396 One direction of cnptoprest 12397 under the weaker condition that the point is in the subset rather than the interior of the subset. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 31-Mar-2023.)
(((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃))
 
30-Mar-2023cncnp2m 12389 A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Revised by Jim Kingdon, 30-Mar-2023.)
𝑋 = 𝐽    &   𝑌 = 𝐾       ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
 
29-Mar-2023exmidlpo 7008 Excluded middle implies the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 29-Mar-2023.)
(EXMID → ω ∈ Omni)
 
28-Mar-2023icnpimaex 12369 Property of a function continuous at a point. (Contributed by FL, 31-Dec-2006.) (Revised by Jim Kingdon, 28-Mar-2023.)
(((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴𝐾 ∧ (𝐹𝑃) ∈ 𝐴)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝐴))
 
28-Mar-2023cnpf2 12365 A continuous function at point 𝑃 is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
 
28-Mar-2023cnprcl2k 12364 Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝑋)
 
27-Mar-2023mptrcl 5496 Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.) (Revised by Jim Kingdon, 27-Mar-2023.)
𝐹 = (𝑥𝐴𝐵)       (𝐼 ∈ (𝐹𝑋) → 𝑋𝐴)
 
25-Mar-2023lmreltop 12351 The topological space convergence relation is a relation. (Contributed by Jim Kingdon, 25-Mar-2023.)
(𝐽 ∈ Top → Rel (⇝𝑡𝐽))
 
25-Mar-2023fodjumkv 7027 A condition which ensures that a nonempty set is inhabited. (Contributed by Jim Kingdon, 25-Mar-2023.)
(𝜑𝑀 ∈ Markov)    &   (𝜑𝐹:𝑀onto→(𝐴𝐵))       (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴))
 
25-Mar-2023fodjumkvlemres 7026 Lemma for fodjumkv 7027. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.)
(𝜑𝑀 ∈ Markov)    &   (𝜑𝐹:𝑀onto→(𝐴𝐵))    &   𝑃 = (𝑦𝑀 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))       (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴))
 
25-Mar-2023fodju0 7012 Lemma for fodjuomni 7014 and fodjumkv 7027. A condition which shows that 𝐴 is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
(𝜑𝐹:𝑂onto→(𝐴𝐵))    &   𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))    &   (𝜑 → ∀𝑤𝑂 (𝑃𝑤) = 1o)       (𝜑𝐴 = ∅)
 
25-Mar-2023fodjum 7011 Lemma for fodjuomni 7014 and fodjumkv 7027. A condition which shows that 𝐴 is inhabited. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
(𝜑𝐹:𝑂onto→(𝐴𝐵))    &   𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))    &   (𝜑 → ∃𝑤𝑂 (𝑃𝑤) = ∅)       (𝜑 → ∃𝑥 𝑥𝐴)
 
25-Mar-2023fodjuf 7010 Lemma for fodjuomni 7014 and fodjumkv 7027. Domain and range of 𝑃. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
(𝜑𝐹:𝑂onto→(𝐴𝐵))    &   𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))    &   (𝜑𝑂𝑉)       (𝜑𝑃 ∈ (2o𝑚 𝑂))
 
23-Mar-2023restrcl 12325 Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Jim Kingdon, 23-Mar-2023.)
((𝐽t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V))
 
22-Mar-2023neipsm 12312 A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.) (Revised by Jim Kingdon, 22-Mar-2023.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
 
19-Mar-2023mkvprop 7025 Markov's Principle expressed in terms of propositions (or more precisely, the 𝐴 = ω case is Markov's Principle). (Contributed by Jim Kingdon, 19-Mar-2023.)
((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∃𝑛𝐴 𝜑)
 
18-Mar-2023omnimkv 7023 An omniscient set is Markov. In particular, the case where 𝐴 is ω means that the Limited Principle of Omniscience (LPO) implies Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)
(𝐴 ∈ Omni → 𝐴 ∈ Markov)
 
18-Mar-2023ismkvmap 7021 The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 18-Mar-2023.)
(𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))
 
18-Mar-2023ismkv 7020 The predicate of being Markov. (Contributed by Jim Kingdon, 18-Mar-2023.)
(𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
 
18-Mar-2023df-markov 7019 A Markov set is one where if a predicate (here represented by a function 𝑓) on that set does not hold (where hold means is equal to 1o) for all elements, then there exists an element where it fails (is equal to ). Generalization of definition 2.5 of [Pierik], p. 9.

In particular, ω ∈ Markov is known as Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)

Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
 
17-Mar-2023finct 6994 A finite set is countable. (Contributed by Jim Kingdon, 17-Mar-2023.)
(𝐴 ∈ Fin → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
 
16-Mar-2023ctmlemr 6986 Lemma for ctm 6987. One of the directions of the biconditional. (Contributed by Jim Kingdon, 16-Mar-2023.)
(∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto𝐴 → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)))
 
15-Mar-2023caseinl 6969 Applying the "case" construction to a left injection. (Contributed by Jim Kingdon, 15-Mar-2023.)
(𝜑𝐹 Fn 𝐵)    &   (𝜑 → Fun 𝐺)    &   (𝜑𝐴𝐵)       (𝜑 → (case(𝐹, 𝐺)‘(inl‘𝐴)) = (𝐹𝐴))
 
13-Mar-2023enumct 6993 A finitely enumerable set is countable. Lemma 8.1.14 of [AczelRathjen], p. 73 (except that our definition of countable does not require the set to be inhabited). "Finitely enumerable" is defined as 𝑛 ∈ ω∃𝑓𝑓:𝑛onto𝐴 per Definition 8.1.4 of [AczelRathjen], p. 71 and "countable" is defined as 𝑔𝑔:ω–onto→(𝐴 ⊔ 1o) per [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
(∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
 
13-Mar-2023enumctlemm 6992 Lemma for enumct 6993. The case where 𝑁 is greater than zero. (Contributed by Jim Kingdon, 13-Mar-2023.)
(𝜑𝐹:𝑁onto𝐴)    &   (𝜑𝑁 ∈ ω)    &   (𝜑 → ∅ ∈ 𝑁)    &   𝐺 = (𝑘 ∈ ω ↦ if(𝑘𝑁, (𝐹𝑘), (𝐹‘∅)))       (𝜑𝐺:ω–onto𝐴)
 
13-Mar-2023ctm 6987 Two equivalent definitions of countable for an inhabited set. Remark of [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
(∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto𝐴))
 
13-Mar-20230ct 6985 The empty set is countable. Remark of [BauerSwan], p. 14:3 which also has the definition of countable used here. (Contributed by Jim Kingdon, 13-Mar-2023.)
𝑓 𝑓:ω–onto→(∅ ⊔ 1o)
 
13-Mar-2023ctex 6640 A class dominated by ω is a set. See also ctfoex 6996 which says that a countable class is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.)
(𝐴 ≼ ω → 𝐴 ∈ V)
 
12-Mar-2023cls0 12291 The closure of the empty set. (Contributed by NM, 2-Oct-2007.) (Proof shortened by Jim Kingdon, 12-Mar-2023.)
(𝐽 ∈ Top → ((cls‘𝐽)‘∅) = ∅)
 
12-Mar-2023algrp1 11716 The value of the algorithm iterator 𝑅 at (𝐾 + 1). (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.)
𝑍 = (ℤ𝑀)    &   𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴𝑆)    &   (𝜑𝐹:𝑆𝑆)       ((𝜑𝐾𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅𝐾)))
 
12-Mar-2023ialgr0 11714 The value of the algorithm iterator 𝑅 at 0 is the initial state 𝐴. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.)
𝑍 = (ℤ𝑀)    &   𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴𝑆)    &   (𝜑𝐹:𝑆𝑆)       (𝜑 → (𝑅𝑀) = 𝐴)
 
11-Mar-2023ntreq0 12290 Two ways to say that a subset has an empty interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥𝐽 (𝑥𝑆𝑥 = ∅)))
 
11-Mar-2023clstop 12285 The closure of a topology's underlying set is the entire set. (Contributed by NM, 5-Oct-2007.) (Proof shortened by Jim Kingdon, 11-Mar-2023.)
𝑋 = 𝐽       (𝐽 ∈ Top → ((cls‘𝐽)‘𝑋) = 𝑋)
 
11-Mar-2023ntrss 12277 Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆))
 
10-Mar-2023iuncld 12273 A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by Jim Kingdon, 10-Mar-2023.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
 
5-Mar-20232basgeng 12240 Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Jim Kingdon, 5-Mar-2023.)
((𝐵𝑉𝐵𝐶𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶))
 
5-Mar-2023exmidsssn 4120 Excluded middle is equivalent to the biconditionalized version of sssnr 3675 for sets. (Contributed by Jim Kingdon, 5-Mar-2023.)
(EXMID ↔ ∀𝑥𝑦(𝑥 ⊆ {𝑦} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑦})))
 
5-Mar-2023exmidn0m 4119 Excluded middle is equivalent to any set being empty or inhabited. (Contributed by Jim Kingdon, 5-Mar-2023.)
(EXMID ↔ ∀𝑥(𝑥 = ∅ ∨ ∃𝑦 𝑦𝑥))
 
4-Mar-2023eltg3 12215 Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Jim Kingdon, 4-Mar-2023.)
(𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥𝐵𝐴 = 𝑥)))
 
4-Mar-2023tgvalex 12208 The topology generated by a basis is a set. (Contributed by Jim Kingdon, 4-Mar-2023.)
(𝐵𝑉 → (topGen‘𝐵) ∈ V)
 
4-Mar-2023biadanii 602 Inference associated with biadani 601. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.)
(𝜑𝜓)    &   (𝜓 → (𝜑𝜒))       (𝜑 ↔ (𝜓𝜒))
 
4-Mar-2023biadani 601 An implication implies to the equivalence of some implied equivalence and some other equivalence involving a conjunction. (Contributed by BJ, 4-Mar-2023.)
(𝜑𝜓)       ((𝜓 → (𝜑𝜒)) ↔ (𝜑 ↔ (𝜓𝜒)))
 
16-Feb-2023ixp0 6618 The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim Kingdon, 16-Feb-2023.)
(∃𝑥𝐴 𝐵 = ∅ → X𝑥𝐴 𝐵 = ∅)
 
16-Feb-2023ixpm 6617 If an infinite Cartesian product of a family 𝐵(𝑥) is inhabited, every 𝐵(𝑥) is inhabited. (Contributed by Mario Carneiro, 22-Jun-2016.) (Revised by Jim Kingdon, 16-Feb-2023.)
(∃𝑓 𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴𝑧 𝑧𝐵)
 
16-Feb-2023exmidundifim 4125 Excluded middle is equivalent to every subset having a complement. Variation of exmidundif 4124 with an implication rather than a biconditional. (Contributed by Jim Kingdon, 16-Feb-2023.)
(EXMID ↔ ∀𝑥𝑦(𝑥𝑦 → (𝑥 ∪ (𝑦𝑥)) = 𝑦))
 
15-Feb-2023ixpintm 6612 The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.)
(∃𝑧 𝑧𝐵X𝑥𝐴 𝐵 = 𝑦𝐵 X𝑥𝐴 𝑦)
 
15-Feb-2023ixpiinm 6611 The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.)
(∃𝑧 𝑧𝐵X𝑥𝐴 𝑦𝐵 𝐶 = 𝑦𝐵 X𝑥𝐴 𝐶)
 
15-Feb-2023ixpexgg 6609 The existence of an infinite Cartesian product. 𝑥 is normally a free-variable parameter in 𝐵. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006.) (Revised by Jim Kingdon, 15-Feb-2023.)
((𝐴𝑊 ∧ ∀𝑥𝐴 𝐵𝑉) → X𝑥𝐴 𝐵 ∈ V)
 
15-Feb-2023nfixpxy 6604 Bound-variable hypothesis builder for indexed Cartesian product. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Jim Kingdon, 15-Feb-2023.)
𝑦𝐴    &   𝑦𝐵       𝑦X𝑥𝐴 𝐵
 
13-Feb-2023topnpropgd 12123 The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.)
(𝜑 → (Base‘𝐾) = (Base‘𝐿))    &   (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))    &   (𝜑𝐾𝑉)    &   (𝜑𝐿𝑊)       (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
 
12-Feb-2023slotex 11975 Existence of slot value. A corollary of slotslfn 11974. (Contributed by Jim Kingdon, 12-Feb-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)       (𝐴𝑉 → (𝐸𝐴) ∈ V)
 
11-Feb-2023topnvalg 12121 Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.)
𝐵 = (Base‘𝑊)    &   𝐽 = (TopSet‘𝑊)       (𝑊𝑉 → (𝐽t 𝐵) = (TopOpen‘𝑊))
 
10-Feb-2023slotslfn 11974 A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) (Revised by Jim Kingdon, 10-Feb-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)       𝐸 Fn V
 
9-Feb-2023pleslid 12105 Slot property of le. (Contributed by Jim Kingdon, 9-Feb-2023.)
(le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ)
 
9-Feb-2023topgrptsetd 12102 The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑𝐽𝑋)       (𝜑𝐽 = (TopSet‘𝑊))
 
9-Feb-2023topgrpplusgd 12101 The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑𝐽𝑋)       (𝜑+ = (+g𝑊))
 
9-Feb-2023topgrpbasd 12100 The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑𝐽𝑋)       (𝜑𝐵 = (Base‘𝑊))
 
9-Feb-2023topgrpstrd 12099 A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑𝐽𝑋)       (𝜑𝑊 Struct ⟨1, 9⟩)
 
9-Feb-2023tsetslid 12098 Slot property of TopSet. (Contributed by Jim Kingdon, 9-Feb-2023.)
(TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ)
 
8-Feb-2023ipsipd 12095 The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝐼 = (·𝑖𝐴))
 
8-Feb-2023ipsvscad 12094 The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑· = ( ·𝑠𝐴))
 
8-Feb-2023ipsscad 12093 The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝑆 = (Scalar‘𝐴))
 
7-Feb-2023ipsmulrd 12092 The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑× = (.r𝐴))
 
7-Feb-2023ipsaddgd 12091 The additive operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑+ = (+g𝐴))
 
7-Feb-2023ipsbased 12090 The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝐵 = (Base‘𝐴))
 
7-Feb-2023ipsstrd 12089 A constructed inner product space is a structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝐴 Struct ⟨1, 8⟩)
 
7-Feb-2023ipslid 12088 Slot property of ·𝑖. (Contributed by Jim Kingdon, 7-Feb-2023.)
(·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ)
 
7-Feb-2023lmodvscad 12085 The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑· = ( ·𝑠𝑊))
 
6-Feb-2023lmodscad 12084 The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑𝐹 = (Scalar‘𝑊))
 
6-Feb-2023lmodplusgd 12083 The additive operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑+ = (+g𝑊))
 
6-Feb-2023lmodbased 12082 The base set of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑𝐵 = (Base‘𝑊))
 
5-Feb-2023lmodstrd 12081 A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑𝑊 Struct ⟨1, 6⟩)
 
5-Feb-2023vscaslid 12080 Slot property of ·𝑠. (Contributed by Jim Kingdon, 5-Feb-2023.)
( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
 
5-Feb-2023scaslid 12077 Slot property of Scalar. (Contributed by Jim Kingdon, 5-Feb-2023.)
(Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
 
5-Feb-2023srngplusgd 12072 The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑+ = (+g𝑅))
 
5-Feb-2023srngbased 12071 The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑𝐵 = (Base‘𝑅))
 
5-Feb-2023srngstrd 12070 A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑𝑅 Struct ⟨1, 4⟩)
 
5-Feb-2023opelstrsl 12044 The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   (𝜑𝑆 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑 → ⟨(𝐸‘ndx), 𝑉⟩ ∈ 𝑆)       (𝜑𝑉 = (𝐸𝑆))
 
4-Feb-2023starvslid 12069 Slot property of *𝑟. (Contributed by Jim Kingdon, 4-Feb-2023.)
(*𝑟 = Slot (*𝑟‘ndx) ∧ (*𝑟‘ndx) ∈ ℕ)
 
3-Feb-2023rngbaseg 12064 The base set of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → 𝐵 = (Base‘𝑅))
 
3-Feb-2023rngstrg 12063 A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → 𝑅 Struct ⟨1, 3⟩)
 
3-Feb-2023mulrslid 12060 Slot property of .r. (Contributed by Jim Kingdon, 3-Feb-2023.)
(.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
 
3-Feb-2023plusgslid 12043 Slot property of +g. (Contributed by Jim Kingdon, 3-Feb-2023.)
(+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
 
2-Feb-20232strop1g 12053 The other slot of a constructed two-slot structure. Version of 2stropg 12050 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ    &   𝐸 = Slot 𝑁       ((𝐵𝑉+𝑊) → + = (𝐸𝐺))
 
2-Feb-20232strbas1g 12052 The base set of a constructed two-slot structure. Version of 2strbasg 12049 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))
 
2-Feb-20232strstr1g 12051 A constructed two-slot structure. Version of 2strstrg 12048 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨(Base‘ndx), 𝑁⟩)
 
31-Jan-2023baseslid 12004 The base set extractor is a slot. (Contributed by Jim Kingdon, 31-Jan-2023.)
(Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
 
31-Jan-2023strsl0 11996 All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 31-Jan-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)       ∅ = (𝐸‘∅)
 
31-Jan-2023strslss 11995 Propagate component extraction to a structure 𝑇 from a subset structure 𝑆. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Jim Kingdon, 31-Jan-2023.)
𝑇 ∈ V    &   Fun 𝑇    &   𝑆𝑇    &   (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆       (𝐸𝑇) = (𝐸𝑆)
 
31-Jan-2023strslssd 11994 Deduction version of strslss 11995. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 31-Jan-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   (𝜑𝑇𝑉)    &   (𝜑 → Fun 𝑇)    &   (𝜑𝑆𝑇)    &   (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)       (𝜑 → (𝐸𝑇) = (𝐸𝑆))
 
30-Jan-2023strslfv3 11993 Variant on strslfv 11992 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.)
(𝜑𝑈 = 𝑆)    &   𝑆 Struct 𝑋    &   (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆    &   (𝜑𝐶𝑉)    &   𝐴 = (𝐸𝑈)       (𝜑𝐴 = 𝐶)
 
30-Jan-2023strslfv 11992 Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 with a component extractor 𝐸 (such as the base set extractor df-base 11954). By virtue of ndxslid 11973, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Jim Kingdon, 30-Jan-2023.)
𝑆 Struct 𝑋    &   (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆       (𝐶𝑉𝐶 = (𝐸𝑆))
 
30-Jan-2023strslfv2 11991 A variation on strslfv 11992 to avoid asserting that 𝑆 itself is a function, which involves sethood of all the ordered pair components of 𝑆. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
𝑆 ∈ V    &   Fun 𝑆    &   (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆       (𝐶𝑉𝐶 = (𝐸𝑆))
 
30-Jan-2023strslfv2d 11990 Deduction version of strslfv 11992. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   (𝜑𝑆𝑉)    &   (𝜑 → Fun 𝑆)    &   (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)    &   (𝜑𝐶𝑊)       (𝜑𝐶 = (𝐸𝑆))
 
30-Jan-2023strslfvd 11989 Deduction version of strslfv 11992. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 30-Jan-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   (𝜑𝑆𝑉)    &   (𝜑 → Fun 𝑆)    &   (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)       (𝜑𝐶 = (𝐸𝑆))
 
30-Jan-2023strsetsid 11981 Value of the structure replacement function. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 30-Jan-2023.)
𝐸 = Slot (𝐸‘ndx)    &   (𝜑𝑆 Struct ⟨𝑀, 𝑁⟩)    &   (𝜑 → Fun 𝑆)    &   (𝜑 → (𝐸‘ndx) ∈ dom 𝑆)       (𝜑𝑆 = (𝑆 sSet ⟨(𝐸‘ndx), (𝐸𝑆)⟩))
 
30-Jan-2023funresdfunsndc 6395 Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself, where equality is decidable. (Contributed by AV, 2-Dec-2018.) (Revised by Jim Kingdon, 30-Jan-2023.)
((∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹DECID 𝑥 = 𝑦 ∧ Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) = 𝐹)
 
29-Jan-2023ndxslid 11973 A structure component extractor is defined by its own index. That the index is a natural number will also be needed in quite a few contexts so it is included in the conclusion of this theorem which can be used as a hypothesis of theorems like strslfv 11992. (Contributed by Jim Kingdon, 29-Jan-2023.)
𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ       (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
 
29-Jan-2023fnsnsplitdc 6394 Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 29-Jan-2023.)
((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → 𝐹 = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
 
28-Jan-20232stropg 12050 The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → + = (𝐸𝐺))
 
28-Jan-20232strbasg 12049 The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))
 
28-Jan-20232strstrg 12048 A constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨1, 𝑁⟩)
 
28-Jan-20231strstrg 12046 A constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩}       (𝐵𝑉𝐺 Struct ⟨1, 1⟩)
 
27-Jan-2023strle2g 12039 Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
𝐼 ∈ ℕ    &   𝐴 = 𝐼    &   𝐼 < 𝐽    &   𝐽 ∈ ℕ    &   𝐵 = 𝐽       ((𝑋𝑉𝑌𝑊) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩} Struct ⟨𝐼, 𝐽⟩)
 
27-Jan-2023strle1g 12038 Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
𝐼 ∈ ℕ    &   𝐴 = 𝐼       (𝑋𝑉 → {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩)
 
27-Jan-2023strleund 12036 Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
(𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)    &   (𝜑𝐺 Struct ⟨𝐶, 𝐷⟩)    &   (𝜑𝐵 < 𝐶)       (𝜑 → (𝐹𝐺) Struct ⟨𝐴, 𝐷⟩)
 
26-Jan-2023ressid2 12007 General behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 26-Jan-2023.)
𝑅 = (𝑊s 𝐴)    &   𝐵 = (Base‘𝑊)       ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = 𝑊)
 
24-Jan-2023setsslnid 11999 Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   (𝐸‘ndx) ≠ 𝐷    &   𝐷 ∈ ℕ       ((𝑊𝐴𝐶𝑉) → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))
 
24-Jan-2023setsslid 11998 Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)       ((𝑊𝐴𝐶𝑉) → 𝐶 = (𝐸‘(𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩)))
 
22-Jan-2023setsabsd 11987 Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.)
(𝜑𝑆𝑉)    &   (𝜑𝐴𝑊)    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑈)       (𝜑 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (𝑆 sSet ⟨𝐴, 𝐶⟩))
 
22-Jan-2023setsresg 11986 The structure replacement function does not affect the value of 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.)
((𝑆𝑉𝐴𝑊𝐵𝑋) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
 
22-Jan-2023setsex 11980 Applying the structure replacement function yields a set. (Contributed by Jim Kingdon, 22-Jan-2023.)
((𝑆𝑉𝐴𝑋𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)
 
22-Jan-20232zsupmax 10990 Two ways to express the maximum of two integers. Because order of integers is decidable, we have more flexibility than for real numbers. (Contributed by Jim Kingdon, 22-Jan-2023.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴𝐵, 𝐵, 𝐴))
 
22-Jan-2023elpwpwel 4391 A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.)
(𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵)
 
21-Jan-2023funresdfunsnss 5616 Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in a subset of the function itself. (Contributed by AV, 2-Dec-2018.) (Revised by Jim Kingdon, 21-Jan-2023.)
((Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) ⊆ 𝐹)
 
20-Jan-2023setsvala 11979 Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 20-Jan-2023.)
((𝑆𝑉𝐴𝑋𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
 
20-Jan-2023fnsnsplitss 5612 Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 20-Jan-2023.)
((𝐹 Fn 𝐴𝑋𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) ⊆ 𝐹)
 
19-Jan-2023strfvssn 11970 A structure component extractor produces a value which is contained in a set dependent on 𝑆, but not 𝐸. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 19-Jan-2023.)
𝐸 = Slot 𝑁    &   (𝜑𝑆𝑉)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → (𝐸𝑆) ⊆ ran 𝑆)
 
19-Jan-2023strnfvn 11969 Value of a structure component extractor 𝐸. Normally, 𝐸 is a defined constant symbol such as Base (df-base 11954) and 𝑁 is a fixed integer such as 1. 𝑆 is a structure, i.e. a specific member of a class of structures.

Note: Normally, this theorem shouldn't be used outside of this section, because it requires hard-coded index values. Instead, use strslfv 11992. (Contributed by NM, 9-Sep-2011.) (Revised by Jim Kingdon, 19-Jan-2023.) (New usage is discouraged.)

𝑆 ∈ V    &   𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ       (𝐸𝑆) = (𝑆𝑁)
 
19-Jan-2023strnfvnd 11968 Deduction version of strnfvn 11969. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 19-Jan-2023.)
𝐸 = Slot 𝑁    &   (𝜑𝑆𝑉)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → (𝐸𝑆) = (𝑆𝑁))
 
18-Jan-2023isstructr 11963 The property of being a structure with components in 𝑀...𝑁. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
(((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → 𝐹 Struct ⟨𝑀, 𝑁⟩)
 
18-Jan-2023isstructim 11962 The property of being a structure with components in 𝑀...𝑁. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
(𝐹 Struct ⟨𝑀, 𝑁⟩ → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁)))
 
18-Jan-2023isstruct2r 11959 The property of being a structure with components in (1st𝑋)...(2nd𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
(((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅})) ∧ (𝐹𝑉 ∧ dom 𝐹 ⊆ (...‘𝑋))) → 𝐹 Struct 𝑋)
 
18-Jan-2023isstruct2im 11958 The property of being a structure with components in (1st𝑋)...(2nd𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
(𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))
 
18-Jan-2023sbiev 1765 Conversion of implicit substitution to explicit substitution. Version of sbie 1764 with a disjoint variable condition. (Contributed by Wolf Lammen, 18-Jan-2023.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝑦 / 𝑥]𝜑𝜓)
 
16-Jan-2023toponsspwpwg 12178 The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) (Revised by Jim Kingdon, 16-Jan-2023.)
(𝐴𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴)
 
14-Jan-2023istopfin 12156 Express the predicate "𝐽 is a topology" using nonempty finite intersections instead of binary intersections as in istopg 12155. It is not clear we can prove the converse without adding additional conditions. (Contributed by NM, 19-Jul-2006.) (Revised by Jim Kingdon, 14-Jan-2023.)
(𝐽 ∈ Top → (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽)))
 
14-Jan-2023fiintim 6810 If a class is closed under pairwise intersections, then it is closed under nonempty finite intersections. The converse would appear to require an additional condition, such as 𝑥 and 𝑦 not being equal, or 𝐴 having decidable equality.

This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use a pairwise intersection and some texts use a finite intersection, but most topology texts assume excluded middle (in which case the two intersection properties would be equivalent). (Contributed by NM, 22-Sep-2002.) (Revised by Jim Kingdon, 14-Jan-2023.)

(∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 → ∀𝑥((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
 
9-Jan-2023divccncfap 12735 Division by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Jim Kingdon, 9-Jan-2023.)
𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 / 𝐴))       ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → 𝐹 ∈ (ℂ–cn→ℂ))
 
7-Jan-2023eap1 11481 e is apart from 1. (Contributed by Jim Kingdon, 7-Jan-2023.)
e # 1
 
7-Jan-2023eap0 11479 e is apart from 0. (Contributed by Jim Kingdon, 7-Jan-2023.)
e # 0
 
7-Jan-2023egt2lt3 11475 Euler's constant e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 28-Nov-2008.) (Revised by Jim Kingdon, 7-Jan-2023.)
(2 < e ∧ e < 3)
 
6-Jan-2023eirr 11474 e is not rational. In the absence of excluded middle, we can distinguish between this and saying that e is irrational in the sense of being apart from any rational number, which is eirrap 11473. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 6-Jan-2023.)
e ∉ ℚ
 
6-Jan-2023eirrap 11473 e is irrational. That is, for any rational number, e is apart from it. In the absence of excluded middle, we can distinguish between this and saying that e is not rational, which is eirr 11474. (Contributed by Jim Kingdon, 6-Jan-2023.)
(𝑄 ∈ ℚ → e # 𝑄)
 
6-Jan-2023btwnapz 9174 A number between an integer and its successor is apart from any integer. (Contributed by Jim Kingdon, 6-Jan-2023.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℤ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑𝐵 < (𝐴 + 1))       (𝜑𝐵 # 𝐶)
 
6-Jan-2023apmul2 8542 Multiplication of both sides of complex apartness by a complex number apart from zero. (Contributed by Jim Kingdon, 6-Jan-2023.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐶 · 𝐴) # (𝐶 · 𝐵)))
 
1-Jan-2023nnap0i 8744 A positive integer is apart from zero (inference version). (Contributed by Jim Kingdon, 1-Jan-2023.)
𝐴 ∈ ℕ       𝐴 # 0
 
26-Dec-2022apdivmuld 8566 Relationship between division and multiplication. (Contributed by Jim Kingdon, 26-Dec-2022.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐴 / 𝐵) # 𝐶 ↔ (𝐵 · 𝐶) # 𝐴))
 
25-Dec-2022tanaddaplem 11434 A useful intermediate step in tanaddap 11435 when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015.) (Revised by Jim Kingdon, 25-Dec-2022.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) → ((cos‘(𝐴 + 𝐵)) # 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) # 1))
 
25-Dec-2022subap0 8398 Two numbers being apart is equivalent to their difference being apart from zero. (Contributed by Jim Kingdon, 25-Dec-2022.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) # 0 ↔ 𝐴 # 𝐵))
 
23-Dec-2022sqrt2irr0 11831 The square root of 2 is not rational. (Contributed by AV, 23-Dec-2022.)
(√‘2) ∈ (ℝ ∖ ℚ)
 
22-Dec-2022tanval3ap 11410 Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon, 22-Dec-2022.)
((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (tan‘𝐴) = (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1))))
 
22-Dec-2022tanval2ap 11409 Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon, 22-Dec-2022.)
((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
 
22-Dec-2022tanclapd 11408 Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.) (Revised by Jim Kingdon, 22-Dec-2022.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (cos‘𝐴) # 0)       (𝜑 → (tan‘𝐴) ∈ ℂ)
 
21-Dec-2022tanclap 11405 The closure of the tangent function with a complex argument. (Contributed by David A. Wheeler, 15-Mar-2014.) (Revised by Jim Kingdon, 21-Dec-2022.)
((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) ∈ ℂ)
 
21-Dec-2022tanvalap 11404 Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Jim Kingdon, 21-Dec-2022.)
((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
 
20-Dec-2022reef11 11395 The exponential function on real numbers is one-to-one. (Contributed by NM, 21-Aug-2008.) (Revised by Jim Kingdon, 20-Dec-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘𝐴) = (exp‘𝐵) ↔ 𝐴 = 𝐵))
 
20-Dec-2022efler 11394 The exponential function on the reals is nondecreasing. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Jim Kingdon, 20-Dec-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘𝐴) ≤ (exp‘𝐵) → 𝐴𝐵))
 
20-Dec-2022efltim 11393 The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 20-Dec-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (exp‘𝐴) < (exp‘𝐵)))
 
20-Dec-2022eqord1 8238 A strictly increasing real function on a subset of is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.) (Revised by Jim Kingdon, 20-Dec-2022.)
(𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝐶𝐴 = 𝑀)    &   (𝑥 = 𝐷𝐴 = 𝑁)    &   𝑆 ⊆ ℝ    &   ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐴 < 𝐵))       ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 = 𝐷𝑀 = 𝑁))
 
14-Dec-2022iserabs 11237 Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Jim Kingdon, 14-Dec-2022.)
𝑍 = (ℤ𝑀)    &   (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)    &   (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))       (𝜑 → (abs‘𝐴) ≤ 𝐵)
 
12-Dec-2022efap0 11372 The exponential of a complex number is apart from zero. (Contributed by Jim Kingdon, 12-Dec-2022.)
(𝐴 ∈ ℂ → (exp‘𝐴) # 0)
 
8-Dec-2022efcllem 11354 Lemma for efcl 11359. The series that defines the exponential function converges. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))       (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
 
8-Dec-2022efcllemp 11353 Lemma for efcl 11359. The series that defines the exponential function converges. The ratio test cvgratgt0 11295 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑𝐾 ∈ ℕ)    &   (𝜑 → (2 · (abs‘𝐴)) < 𝐾)       (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
 
8-Dec-2022eftvalcn 11352 The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 8-Dec-2022.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))       ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹𝑁) = ((𝐴𝑁) / (!‘𝑁)))
 
8-Dec-2022mertensabs 11299 Mertens' theorem. If 𝐴(𝑗) is an absolutely convergent series and 𝐵(𝑘) is convergent, then 𝑗 ∈ ℕ0𝐴(𝑗) · Σ𝑘 ∈ ℕ0𝐵(𝑘)) = Σ𝑘 ∈ ℕ0Σ𝑗 ∈ (0...𝑘)(𝐴(𝑗) · 𝐵(𝑘𝑗)) (and this latter series is convergent). This latter sum is commonly known as the Cauchy product of the sequences. The proof follows the outline at http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 8-Dec-2022.)
((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)    &   ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))    &   ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)    &   ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))    &   (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )    &   (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )    &   (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )       (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0 𝐴 · Σ𝑘 ∈ ℕ0 𝐵))
 
3-Dec-2022mertenslemub 11296 Lemma for mertensabs 11299. An upper bound for 𝑇. (Contributed by Jim Kingdon, 3-Dec-2022.)
((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)    &   ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)    &   (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )    &   𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}    &   (𝜑𝑋𝑇)    &   (𝜑𝑆 ∈ ℕ)       (𝜑𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
 
2-Dec-2022mertenslemi1 11297 Lemma for mertensabs 11299. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)    &   ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))    &   ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)    &   ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))    &   (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )    &   (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )    &   (𝜑𝐸 ∈ ℝ+)    &   𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}    &   (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))    &   (𝜑𝑃 ∈ ℝ)    &   (𝜑 → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))))    &   (𝜑 → 0 ≤ 𝑃)    &   (𝜑 → ∀𝑤𝑇 𝑤𝑃)       (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
 
2-Dec-2022fsum3cvg3 11158 A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐴𝑍)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
 
2-Dec-2022fsum3cvg2 11156 The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝐴 ⊆ (𝑀...𝑁))       (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁))
 
24-Nov-2022cvgratnnlembern 11285 Lemma for cvgratnn 11293. Upper bound for a geometric progression of positive ratio less than one. (Contributed by Jim Kingdon, 24-Nov-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   (𝜑𝑀 ∈ ℕ)       (𝜑 → (𝐴𝑀) < ((1 / ((1 / 𝐴) − 1)) / 𝑀))
 
23-Nov-2022cvgratnnlemfm 11291 Lemma for cvgratnn 11293. (Contributed by Jim Kingdon, 23-Nov-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))    &   (𝜑𝑀 ∈ ℕ)       (𝜑 → (abs‘(𝐹𝑀)) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀))
 
23-Nov-2022cvgratnnlemsumlt 11290 Lemma for cvgratnn 11293. (Contributed by Jim Kingdon, 23-Nov-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ𝑀))       (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)) < (𝐴 / (1 − 𝐴)))
 
21-Nov-2022cvgratnnlemrate 11292 Lemma for cvgratnn 11293. (Contributed by Jim Kingdon, 21-Nov-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ𝑀))       (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀))
 
21-Nov-2022cvgratnnlemabsle 11289 Lemma for cvgratnn 11293. (Contributed by Jim Kingdon, 21-Nov-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ𝑀))       (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)) ≤ ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))))
 
21-Nov-2022cvgratnnlemseq 11288 Lemma for cvgratnn 11293. (Contributed by Jim Kingdon, 21-Nov-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ𝑀))       (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
 
15-Nov-2022cvgratnnlemmn 11287 Lemma for cvgratnn 11293. (Contributed by Jim Kingdon, 15-Nov-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ𝑀))       (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))
 
15-Nov-2022cvgratnnlemnexp 11286 Lemma for cvgratnn 11293. (Contributed by Jim Kingdon, 15-Nov-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))
 
12-Nov-2022cvgratnn 11293 Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms, then the infinite sum of the terms of 𝐹 converges to a complex number. Although this theorem is similar to cvgratz 11294 and cvgratgt0 11295, the decision to index starting at one is not merely cosmetic, as proving convergence using climcvg1n 11112 is sensitive to how a sequence is indexed. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 12-Nov-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))       (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
 
12-Nov-2022fsum3cvg 11139 The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 12-Nov-2022.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐴 ⊆ (𝑀...𝑁))       (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁))
 
12-Nov-2022seq3id2 10275 The last few partial sums of a sequence that ends with all zeroes (or any element which is a right-identity for +) are all the same. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 12-Nov-2022.)
((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑥)    &   (𝜑𝐾 ∈ (ℤ𝑀))    &   (𝜑𝑁 ∈ (ℤ𝐾))    &   (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ∈ 𝑆)    &   ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑥) = 𝑍)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁))
 
11-Nov-2022cvgratgt0 11295 Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms beyond some index 𝐵, then the infinite sum of the terms of 𝐹 converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
𝑍 = (ℤ𝑀)    &   𝑊 = (ℤ𝑁)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))       (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
 
11-Nov-2022cvgratz 11294 Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms, then the infinite sum of the terms of 𝐹 converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))       (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
 
4-Nov-2022seq3val 10224 Value of the sequence builder function. This helps expand the definition although there should be little need for it once we have proved seqf 10227, seq3-1 10226 and seq3p1 10228, as further development can be done in terms of those. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 4-Nov-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑅 = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → seq𝑀( + , 𝐹) = ran 𝑅)
 
4-Nov-2022df-seqfrec 10212 Define a general-purpose operation that builds a recursive sequence (i.e., a function on an upper integer set such as or 0) whose value at an index is a function of its previous value and the value of an input sequence at that index. This definition is complicated, but fortunately it is not intended to be used directly. Instead, the only purpose of this definition is to provide us with an object that has the properties expressed by seqf 10227, seq3-1 10226 and seq3p1 10228. Typically, those are the main theorems that would be used in practice.

The first operand in the parentheses is the operation that is applied to the previous value and the value of the input sequence (second operand). The operand to the left of the parenthesis is the integer to start from. For example, for the operation +, an input sequence 𝐹 with values 1, 1/2, 1/4, 1/8,... would be transformed into the output sequence seq1( + , 𝐹) with values 1, 3/2, 7/4, 15/8,.., so that (seq1( + , 𝐹)‘1) = 1, (seq1( + , 𝐹)‘2) = 3/2, etc. In other words, seq𝑀( + , 𝐹) transforms a sequence 𝐹 into an infinite series. seq𝑀( + , 𝐹) ⇝ 2 means "the sum of F(n) from n = M to infinity is 2." Since limits are unique (climuni 11055), by climdm 11057 the "sum of F(n) from n = 1 to infinity" can be expressed as ( ⇝ ‘seq1( + , 𝐹)) (provided the sequence converges) and evaluates to 2 in this example.

Internally, the frec function generates as its values a set of ordered pairs starting at 𝑀, (𝐹𝑀)⟩, with the first member of each pair incremented by one in each successive value. So, the range of frec is exactly the sequence we want, and we just extract the range and throw away the domain.

(Contributed by NM, 18-Apr-2005.) (Revised by Jim Kingdon, 4-Nov-2022.)

seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
 
3-Nov-2022seq3f1o 10270 Rearrange a sum via an arbitrary bijection on (𝑀...𝑁). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 3-Nov-2022.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐻𝑥) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = (𝐺‘(𝐹𝑘)))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
 
3-Nov-2022seq3m1 10234 Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 3-Nov-2022.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)))
 
29-Oct-2022absgtap 11272 Greater-than of absolute value implies apartness. (Contributed by Jim Kingdon, 29-Oct-2022.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐵 < (abs‘𝐴))       (𝜑𝐴 # 𝐵)
 
29-Oct-2022absltap 11271 Less-than of absolute value implies apartness. (Contributed by Jim Kingdon, 29-Oct-2022.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (abs‘𝐴) < 𝐵)       (𝜑𝐴 # 𝐵)
 
29-Oct-20221ap2 8920 1 is apart from 2. (Contributed by Jim Kingdon, 29-Oct-2022.)
1 # 2
 
28-Oct-2022expcnv 11266 A sequence of powers of a complex number 𝐴 with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 28-Oct-2022.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (abs‘𝐴) < 1)       (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
 
28-Oct-2022expcnvre 11265 A sequence of powers of a nonnegative real number less than one converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
 
27-Oct-2022ennnfone 11927 A condition for a set being countably infinite. Corollary 8.1.13 of [AczelRathjen], p. 73. Roughly speaking, the condition says that 𝐴 is countable (that's the 𝑓:ℕ0onto𝐴 part, as seen in theorems like ctm 6987), infinite (that's the part about being able to find an element of 𝐴 distinct from any mapping of a natural number via 𝑓), and has decidable equality. (Contributed by Jim Kingdon, 27-Oct-2022.)
(𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
 
27-Oct-2022ennnfonelemim 11926 Lemma for ennnfone 11927. The trivial direction. (Contributed by Jim Kingdon, 27-Oct-2022.)
(𝐴 ≈ ℕ → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
 
27-Oct-2022ennnfonelemr 11925 Lemma for ennnfone 11927. The interesting direction, expressed in deduction form. (Contributed by Jim Kingdon, 27-Oct-2022.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ℕ0onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗))       (𝜑𝐴 ≈ ℕ)
 
27-Oct-2022ennnfonelemnn0 11924 Lemma for ennnfone 11927. A version of ennnfonelemen 11923 expressed in terms of 0 instead of ω. (Contributed by Jim Kingdon, 27-Oct-2022.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ℕ0onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)       (𝜑𝐴 ≈ ℕ)
 
24-Oct-2022pwm1geoserap1 11270 The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). (Contributed by AV, 14-Aug-2021.) (Revised by Jim Kingdon, 24-Oct-2022.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴 # 1)       (𝜑 → ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
 
24-Oct-2022geoserap 11269 The value of the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). This is Metamath 100 proof #66. (Contributed by NM, 12-May-2006.) (Revised by Jim Kingdon, 24-Oct-2022.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 1)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) = ((1 − (𝐴𝑁)) / (1 − 𝐴)))
 
24-Oct-2022geosergap 11268 The value of the finite geometric series 𝐴𝑀 + 𝐴↑(𝑀 + 1) +... + 𝐴↑(𝑁 − 1). (Contributed by Mario Carneiro, 2-May-2016.) (Revised by Jim Kingdon, 24-Oct-2022.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 1)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ (ℤ𝑀))       (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) = (((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)))
 
23-Oct-2022expcnvap0 11264 A sequence of powers of a complex number 𝐴 with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 23-Oct-2022.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (abs‘𝐴) < 1)    &   (𝜑𝐴 # 0)       (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
 
22-Oct-2022divcnv 11259 The sequence of reciprocals of positive integers, multiplied by the factor 𝐴, converges to zero. (Contributed by NM, 6-Feb-2008.) (Revised by Jim Kingdon, 22-Oct-2022.)
(𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0)
 
22-Oct-2022impcomd 253 Importation deduction with commuted antecedents. (Contributed by Peter Mazsa, 24-Sep-2022.) (Proof shortened by Wolf Lammen, 22-Oct-2022.)
(𝜑 → (𝜓 → (𝜒𝜃)))       (𝜑 → ((𝜒𝜓) → 𝜃))
 
21-Oct-2022isumsplit 11253 Split off the first 𝑁 terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 21-Oct-2022.)
𝑍 = (ℤ𝑀)    &   𝑊 = (ℤ𝑁)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)    &   (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )       (𝜑 → Σ𝑘𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘𝑊 𝐴))
 
21-Oct-2022seq3split 10245 Split a sequence into two sequences. (Contributed by Jim Kingdon, 16-Aug-2021.) (Revised by Jim Kingdon, 21-Oct-2022.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))    &   (𝜑𝑀 ∈ (ℤ𝐾))    &   ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐹𝑥) ∈ 𝑆)       (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
 
20-Oct-2022fidcenumlemrk 6835 Lemma for fidcenum 6837. (Contributed by Jim Kingdon, 20-Oct-2022.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:𝑁onto𝐴)    &   (𝜑𝐾 ∈ ω)    &   (𝜑𝐾𝑁)    &   (𝜑𝑋𝐴)       (𝜑 → (𝑋 ∈ (𝐹𝐾) ∨ ¬ 𝑋 ∈ (𝐹𝐾)))
 
20-Oct-2022fidcenumlemrks 6834 Lemma for fidcenum 6837. Induction step for fidcenumlemrk 6835. (Contributed by Jim Kingdon, 20-Oct-2022.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:𝑁onto𝐴)    &   (𝜑𝐽 ∈ ω)    &   (𝜑 → suc 𝐽𝑁)    &   (𝜑 → (𝑋 ∈ (𝐹𝐽) ∨ ¬ 𝑋 ∈ (𝐹𝐽)))    &   (𝜑𝑋𝐴)       (𝜑 → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
 
19-Oct-2022fidcenum 6837 A set is finite if and only if it has decidable equality and is finitely enumerable. Proposition 8.1.11 of [AczelRathjen], p. 72. The definition of "finitely enumerable" as 𝑛 ∈ ω∃𝑓𝑓:𝑛onto𝐴 is Definition 8.1.4 of [AczelRathjen], p. 71. (Contributed by Jim Kingdon, 19-Oct-2022.)
(𝐴 ∈ Fin ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴))
 
19-Oct-2022fidcenumlemr 6836 Lemma for fidcenum 6837. Reverse direction (put into deduction form). (Contributed by Jim Kingdon, 19-Oct-2022.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:𝑁onto𝐴)    &   (𝜑𝑁 ∈ ω)       (𝜑𝐴 ∈ Fin)
 
19-Oct-2022fidcenumlemim 6833 Lemma for fidcenum 6837. Forward direction. (Contributed by Jim Kingdon, 19-Oct-2022.)
(𝐴 ∈ Fin → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴))
 
17-Oct-2022iser3shft 11108 Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Jim Kingdon, 17-Oct-2022.)
(𝜑𝐹𝑉)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴))
 
17-Oct-2022seq3shft 10603 Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.)
(𝜑𝐹𝑉)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑥 ∈ (ℤ‘(𝑀𝑁))) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀𝑁)( + , 𝐹) shift 𝑁))
 
16-Oct-2022resqrexlemf1 10773 Lemma for resqrex 10791. Initial value. Although this sequence converges to the square root with any positive initial value, this choice makes various steps in the proof of convergence easier. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (𝐹‘1) = (1 + 𝐴))
 
16-Oct-2022resqrexlemf 10772 Lemma for resqrex 10791. The sequence is a function. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑𝐹:ℕ⟶ℝ+)
 
16-Oct-2022resqrexlemp1rp 10771 Lemma for resqrex 10791. Applying the recursion rule yields a positive real (expressed in a way that will help apply seqf 10227 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+)
 
16-Oct-2022resqrexlem1arp 10770 Lemma for resqrex 10791. 1 + 𝐴 is a positive real (expressed in a way that will help apply seqf 10227 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) ∈ ℝ+)
 
15-Oct-2022inffz 13227 The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.)
(𝑁 ∈ (ℤ𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀)
 
15-Oct-2022supfz 13226 The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.)
(𝑁 ∈ (ℤ𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁)
 
12-Oct-2022fsumlessfi 11222 A shorter sum of nonnegative terms is no greater than a longer one. (Contributed by NM, 26-Dec-2005.) (Revised by Jim Kingdon, 12-Oct-2022.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑘𝐴) → 0 ≤ 𝐵)    &   (𝜑𝐶𝐴)    &   (𝜑𝐶 ∈ Fin)       (𝜑 → Σ𝑘𝐶 𝐵 ≤ Σ𝑘𝐴 𝐵)
 
12-Oct-2022modfsummodlemstep 11219 Induction step for modfsummod 11220. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by Jim Kingdon, 12-Oct-2022.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)    &   (𝜑 → ¬ 𝑧𝐴)    &   (𝜑 → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))       (𝜑 → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
 
10-Oct-2022fsum3 11149 The value of a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
(𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)       (𝜑 → Σ𝑘𝐴 𝐵 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀))
 
10-Oct-2022fsumgcl 11148 Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
(𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)       (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) ∈ ℂ)
 
10-Oct-2022seq3distr 10279 The distributive property for series. (Contributed by Jim Kingdon, 10-Oct-2022.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) = (𝐶𝑇(𝐺𝑥)))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑇𝑦) ∈ 𝑆)    &   (𝜑𝐶𝑆)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
 
10-Oct-2022seq3homo 10276 Apply a homomorphism to a sequence. (Contributed by Jim Kingdon, 10-Oct-2022.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐻‘(𝐹𝑥)) = (𝐺𝑥))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)       (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))
 
8-Oct-2022fsum2dlemstep 11196 Lemma for fsum2d 11197- induction step. (Contributed by Mario Carneiro, 23-Apr-2014.) (Revised by Jim Kingdon, 8-Oct-2022.)
(𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)    &   ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)    &   (𝜑 → ¬ 𝑦𝑥)    &   (𝜑 → (𝑥 ∪ {𝑦}) ⊆ 𝐴)    &   (𝜑𝑥 ∈ Fin)    &   (𝜓 ↔ Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)       ((𝜑𝜓) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
 
7-Oct-2022iunfidisj 6827 The finite union of disjoint finite sets is finite. Note that 𝐵 depends on 𝑥, i.e. can be thought of as 𝐵(𝑥). (Contributed by NM, 23-Mar-2006.) (Revised by Jim Kingdon, 7-Oct-2022.)
((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) → 𝑥𝐴 𝐵 ∈ Fin)
 
7-Oct-2022disjnims 3916 If a collection 𝐵(𝑖) for 𝑖𝐴 is disjoint, then pairs are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by Jim Kingdon, 7-Oct-2022.)
(Disj 𝑥𝐴 𝐵 → ∀𝑖𝐴𝑗𝐴 (𝑖𝑗 → (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
 
6-Oct-2022disjnim 3915 If a collection 𝐵(𝑖) for 𝑖𝐴 is disjoint, then pairs are disjoint. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Jim Kingdon, 6-Oct-2022.)
(𝑖 = 𝑗𝐵 = 𝐶)       (Disj 𝑖𝐴 𝐵 → ∀𝑖𝐴𝑗𝐴 (𝑖𝑗 → (𝐵𝐶) = ∅))
 
5-Oct-2022dcun 3468 The union of two decidable classes is decidable. (Contributed by Jim Kingdon, 5-Oct-2022.)
(𝜑DECID 𝑘𝐴)    &   (𝜑DECID 𝑘𝐵)       (𝜑DECID 𝑘 ∈ (𝐴𝐵))
 
4-Oct-2022ser3add 10271 The sum of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 4-Oct-2022.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁)))
 
3-Oct-2022seq3-1 10226 Value of the sequence builder function at its initial value. (Contributed by Jim Kingdon, 3-Oct-2022.)
(𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
 
3-Oct-2022brrelex12i 4576 Two classes that are related by a binary relation are sets. (An artifact of our ordered pair definition.) (Contributed by BJ, 3-Oct-2022.)
Rel 𝑅       (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
 
1-Oct-2022fsum3ser 11159 A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 11174 and fsump1 11182, which should make our notation clear and from which, along with closure fsumcl 11162, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.)
((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = 𝐴)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)       (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁))
 
1-Oct-2022tpfidisj 6809 A triple is finite if it consists of three unequal sets. (Contributed by Jim Kingdon, 1-Oct-2022.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑋)    &   (𝜑𝐴𝐵)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐶)       (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin)
 
30-Sep-2022exdistrv 1882 Distribute a pair of existential quantifiers (over disjoint variables) over a conjunction. Combination of 19.41v 1874 and 19.42v 1878. For a version with fewer disjoint variable conditions but requiring more axioms, see eeanv 1902. (Contributed by BJ, 30-Sep-2022.)
(∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
 
28-Sep-2022seq3clss 10233 Closure property of the recursive sequence builder. (Contributed by Jim Kingdon, 28-Sep-2022.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑇)    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   (𝜑𝑆𝑇)    &   ((𝜑 ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) ∈ 𝑇)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆)
 
27-Sep-2022zmaxcl 10989 The maximum of two integers is an integer. (Contributed by Jim Kingdon, 27-Sep-2022.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℤ)
 
24-Sep-2022isumss2 11155 Change the index set of a sum by adding zeroes. The nonzero elements are in the contained set 𝐴 and the added zeroes compose the rest of the containing set 𝐵 which needs to be summable. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Jim Kingdon, 24-Sep-2022.)
(𝜑𝐴𝐵)    &   (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)    &   (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)    &   (𝜑 → ((𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵) ∨ 𝐵 ∈ Fin))       (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
 
24-Sep-2022preimaf1ofi 6832 The preimage of a finite set under a one-to-one, onto function is finite. (Contributed by Jim Kingdon, 24-Sep-2022.)
(𝜑𝐶𝐵)    &   (𝜑𝐹:𝐴1-1-onto𝐵)    &   (𝜑𝐶 ∈ Fin)       (𝜑 → (𝐹𝐶) ∈ Fin)
 
24-Sep-2022ifmdc 3504 If a conditional class is inhabited, then the condition is decidable. This shows that conditionals are not very useful unless one can prove the condition decidable. (Contributed by BJ, 24-Sep-2022.)
(𝐴 ∈ if(𝜑, 𝐵, 𝐶) → DECID 𝜑)
 
24-Sep-2022mpbiran2d 438 Detach truth from conjunction in biconditional. Deduction form. (Contributed by Peter Mazsa, 24-Sep-2022.)
(𝜑𝜃)    &   (𝜑 → (𝜓 ↔ (𝜒𝜃)))       (𝜑 → (𝜓𝜒))
 
23-Sep-2022fisumss 11154 Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 23-Sep-2022.)
(𝜑𝐴𝐵)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)    &   (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)    &   (𝜑𝐵 ∈ Fin)       (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
 
21-Sep-2022pw1dom2 13179 The power set of 1o dominates 2o. Also see pwpw0ss 3726 which is similar. (Contributed by Jim Kingdon, 21-Sep-2022.)
2o ≼ 𝒫 1o
 
21-Sep-2022isumss 11153 Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.)
(𝜑𝐴𝐵)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)    &   (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐵 ⊆ (ℤ𝑀))    &   (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)       (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
 
18-Sep-2022sumfct 11136 A lemma to facilitate conversions from the function form to the class-variable form of a sum. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 18-Sep-2022.)
(∀𝑘𝐴 𝐵 ∈ ℂ → Σ𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = Σ𝑘𝐴 𝐵)
 
16-Sep-2022fser0const 10282 Simplifying an expression which turns out just to be a constant zero sequence. (Contributed by Jim Kingdon, 16-Sep-2022.)
𝑍 = (ℤ𝑀)       (𝑁𝑍 → (𝑛𝑍 ↦ if(𝑛𝑁, ((𝑍 × {0})‘𝑛), 0)) = (𝑍 × {0}))
 
8-Sep-2022zfz1isolemiso 10575 Lemma for zfz1iso 10577. Adding one element to the order isomorphism. (Contributed by Jim Kingdon, 8-Sep-2022.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ⊆ ℤ)    &   (𝜑𝑀𝑋)    &   (𝜑 → ∀𝑧𝑋 𝑧𝑀)    &   (𝜑𝐺 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))    &   (𝜑𝐴 ∈ (1...(♯‘𝑋)))    &   (𝜑𝐵 ∈ (1...(♯‘𝑋)))       (𝜑 → (𝐴 < 𝐵 ↔ ((𝐺 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝐴) < ((𝐺 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝐵)))
 
8-Sep-2022zfz1isolemsplit 10574 Lemma for zfz1iso 10577. Removing one element from an integer range. (Contributed by Jim Kingdon, 8-Sep-2022.)
(𝜑𝑋 ∈ Fin)    &   (𝜑𝑀𝑋)       (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}))
 
7-Sep-2022zfz1isolem1 10576 Lemma for zfz1iso 10577. Existence of an order isomorphism given the existence of shorter isomorphisms. (Contributed by Jim Kingdon, 7-Sep-2022.)
(𝜑𝐾 ∈ ω)    &   (𝜑 → ∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)))    &   (𝜑𝑋 ⊆ ℤ)    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝑋 ≈ suc 𝐾)    &   (𝜑𝑀𝑋)    &   (𝜑 → ∀𝑧𝑋 𝑧𝑀)       (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋))
 
6-Sep-2022fimaxq 10566 A finite set of rational numbers has a maximum. (Contributed by Jim Kingdon, 6-Sep-2022.)
((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
 
5-Sep-2022fimax2gtri 6788 A finite set has a maximum under a trichotomous order. (Contributed by Jim Kingdon, 5-Sep-2022.)
(𝜑𝑅 Po 𝐴)    &   (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐴 ≠ ∅)       (𝜑 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
 
5-Sep-2022fimax2gtrilemstep 6787 Lemma for fimax2gtri 6788. The induction step. (Contributed by Jim Kingdon, 5-Sep-2022.)
(𝜑𝑅 Po 𝐴)    &   (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐴 ≠ ∅)    &   (𝜑𝑈 ∈ Fin)    &   (𝜑𝑈𝐴)    &   (𝜑𝑍𝐴)    &   (𝜑𝑉𝐴)    &   (𝜑 → ¬ 𝑉𝑈)    &   (𝜑 → ∀𝑦𝑈 ¬ 𝑍𝑅𝑦)       (𝜑 → ∃𝑥𝐴𝑦 ∈ (𝑈 ∪ {𝑉}) ¬ 𝑥𝑅𝑦)
 
5-Sep-2022tridc 6786 A trichotomous order is decidable. (Contributed by Jim Kingdon, 5-Sep-2022.)
(𝜑𝑅 Po 𝐴)    &   (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))    &   (𝜑𝐵𝐴)    &   (𝜑𝐶𝐴)       (𝜑DECID 𝐵𝑅𝐶)
 
3-Sep-2022zfz1iso 10577 A finite set of integers has an order isomorphism to a one-based finite sequence. (Contributed by Jim Kingdon, 3-Sep-2022.)
((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))
 
2-Sep-2022rspceeqv 2802 Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.)
(𝑥 = 𝐴𝐶 = 𝐷)       ((𝐴𝐵𝐸 = 𝐷) → ∃𝑥𝐵 𝐸 = 𝐶)
 
1-Sep-2022ssidd 3113 Weakening of ssid 3112. (Contributed by BJ, 1-Sep-2022.)
(𝜑𝐴𝐴)
 
31-Aug-2022fveqeq2 5423 Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.)
(𝐴 = 𝐵 → ((𝐹𝐴) = 𝐶 ↔ (𝐹𝐵) = 𝐶))
 
30-Aug-2022iseqf1olemfvp 10263 Lemma for seq3f1o 10270. (Contributed by Jim Kingdon, 30-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝑇:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑𝐴 ∈ (𝑀...𝑁))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))       (𝜑 → (𝑇 / 𝑓𝑃𝐴) = (𝐺‘(𝑇𝐴)))
 
30-Aug-2022fveqeq2d 5422 Equality deduction for function value. (Contributed by BJ, 30-Aug-2022.)
(𝜑𝐴 = 𝐵)       (𝜑 → ((𝐹𝐴) = 𝐶 ↔ (𝐹𝐵) = 𝐶))
 
29-Aug-2022seq3f1olemqsumkj 10264 Lemma for seq3f1o 10270. 𝑄 gives the same sum as 𝐽 in the range (𝐾...(𝐽𝐾)). (Contributed by Jim Kingdon, 29-Aug-2022.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   (𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)    &   (𝜑𝐾 ≠ (𝐽𝐾))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))    &   𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))       (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘(𝐽𝐾)) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)))
 
29-Aug-2022iseqf1olemqpcl 10262 Lemma for seq3f1o 10270. A closure lemma involving 𝑄 and 𝑃. (Contributed by Jim Kingdon, 29-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))       ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
 
29-Aug-2022iseqf1olemjpcl 10261 Lemma for seq3f1o 10270. A closure lemma involving 𝐽 and 𝑃. (Contributed by Jim Kingdon, 29-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))       ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐽 / 𝑓𝑃𝑥) ∈ 𝑆)
 
28-Aug-2022iseqf1olemqval 10253 Lemma for seq3f1o 10270. Value of the function 𝑄. (Contributed by Jim Kingdon, 28-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑𝐴 ∈ (𝑀...𝑁))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))       (𝜑 → (𝑄𝐴) = if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)))
 
27-Aug-2022iseqf1olemmo 10258 Lemma for seq3f1o 10270. Showing that 𝑄 is one-to-one. (Contributed by Jim Kingdon, 27-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))    &   (𝜑𝐴 ∈ (𝑀...𝑁))    &   (𝜑𝐵 ∈ (𝑀...𝑁))    &   (𝜑 → (𝑄𝐴) = (𝑄𝐵))       (𝜑𝐴 = 𝐵)
 
27-Aug-2022iseqf1olemnanb 10256 Lemma for seq3f1o 10270. (Contributed by Jim Kingdon, 27-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑𝐴 ∈ (𝑀...𝑁))    &   (𝜑𝐵 ∈ (𝑀...𝑁))    &   (𝜑 → (𝑄𝐴) = (𝑄𝐵))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))    &   (𝜑 → ¬ 𝐴 ∈ (𝐾...(𝐽𝐾)))    &   (𝜑 → ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))       (𝜑𝐴 = 𝐵)
 
27-Aug-2022iseqf1olemab 10255 Lemma for seq3f1o 10270. (Contributed by Jim Kingdon, 27-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑𝐴 ∈ (𝑀...𝑁))    &   (𝜑𝐵 ∈ (𝑀...𝑁))    &   (𝜑 → (𝑄𝐴) = (𝑄𝐵))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))    &   (𝜑𝐴 ∈ (𝐾...(𝐽𝐾)))    &   (𝜑𝐵 ∈ (𝐾...(𝐽𝐾)))       (𝜑𝐴 = 𝐵)
 
27-Aug-2022iseqf1olemnab 10254 Lemma for seq3f1o 10270. (Contributed by Jim Kingdon, 27-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑𝐴 ∈ (𝑀...𝑁))    &   (𝜑𝐵 ∈ (𝑀...𝑁))    &   (𝜑 → (𝑄𝐴) = (𝑄𝐵))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))       (𝜑 → ¬ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
 
27-Aug-2022iseqf1olemqcl 10252 Lemma for seq3f1o 10270. (Contributed by Jim Kingdon, 27-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑𝐴 ∈ (𝑀...𝑁))       (𝜑 → if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)) ∈ (𝑀...𝑁))
 
26-Aug-2022iseqf1olemqf 10257 Lemma for seq3f1o 10270. Domain and codomain of 𝑄. (Contributed by Jim Kingdon, 26-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))       (𝜑𝑄:(𝑀...𝑁)⟶(𝑀...𝑁))
 
25-Aug-2022fzodcel 9922 Decidability of membership in a half-open integer interval. (Contributed by Jim Kingdon, 25-Aug-2022.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (𝑀..^𝑁))
 
24-Aug-2022rspceaimv 2792 Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.)
(𝑥 = 𝐴 → (𝜑𝜓))       ((𝐴𝐵 ∧ ∀𝑦𝐶 (𝜓𝜒)) → ∃𝑥𝐵𝑦𝐶 (𝜑𝜒))
 
22-Aug-2022seq3f1olemqsumk 10265 Lemma for seq3f1o 10270. 𝑄 gives the same sum as 𝐽 in the range (𝐾...𝑁). (Contributed by Jim Kingdon, 22-Aug-2022.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   (𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)    &   (𝜑𝐾 ≠ (𝐽𝐾))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))    &   𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))       (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘𝑁))
 
21-Aug-2022seq3f1olemqsum 10266 Lemma for seq3f1o 10270. 𝑄 gives the same sum as 𝐽. (Contributed by Jim Kingdon, 21-Aug-2022.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   (𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)    &   (𝜑𝐾 ≠ (𝐽𝐾))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))    &   𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))       (𝜑 → (seq𝑀( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝑄 / 𝑓𝑃)‘𝑁))
 
21-Aug-2022iseqf1olemqk 10260 Lemma for seq3f1o 10270. 𝑄 is constant for one more position than 𝐽 is. (Contributed by Jim Kingdon, 21-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))    &   (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)       (𝜑 → ∀𝑥 ∈ (𝑀...𝐾)(𝑄𝑥) = 𝑥)
 
21-Aug-2022iseqf1olemqf1o 10259 Lemma for seq3f1o 10270. 𝑄 is a permutation of (𝑀...𝑁). 𝑄 is formed from the constant portion of 𝐽, followed by the single element 𝐾 (at position 𝐾), followed by the rest of J (with the 𝐾 deleted and the elements before 𝐾 moved one position later to fill the gap). (Contributed by Jim Kingdon, 21-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))       (𝜑𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
 
21-Aug-2022iseqf1olemklt 10251 Lemma for seq3f1o 10270. (Contributed by Jim Kingdon, 21-Aug-2022.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)    &   (𝜑𝐾 ≠ (𝐽𝐾))       (𝜑𝐾 < (𝐽𝐾))
 
21-Aug-2022iseqf1olemkle 10250 Lemma for seq3f1o 10270. (Contributed by Jim Kingdon, 21-Aug-2022.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)       (𝜑𝐾 ≤ (𝐽𝐾))
 
21-Aug-2022fssdm 5282 Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, semi-deduction form. (Contributed by AV, 21-Aug-2022.)
𝐷 ⊆ dom 𝐹    &   (𝜑𝐹:𝐴𝐵)       (𝜑𝐷𝐴)
 
21-Aug-2022fssdmd 5281 Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐷 ⊆ dom 𝐹)       (𝜑𝐷𝐴)
 
21-Aug-2022eqelssd 3111 Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥𝐵) → 𝑥𝐴)       (𝜑𝐴 = 𝐵)
 
21-Aug-2022reximssdv 2534 Derivation of a restricted existential quantification over a subset (the second hypothesis implies 𝐴𝐵), deduction form. (Contributed by AV, 21-Aug-2022.)
(𝜑 → ∃𝑥𝐵 𝜓)    &   ((𝜑 ∧ (𝑥𝐵𝜓)) → 𝑥𝐴)    &   ((𝜑 ∧ (𝑥𝐵𝜓)) → 𝜒)       (𝜑 → ∃𝑥𝐴 𝜒)
 
21-Aug-2022animpimp2impd 548 Deduction deriving nested implications from conjunctions. (Contributed by AV, 21-Aug-2022.)
((𝜓𝜑) → (𝜒 → (𝜃𝜂)))    &   ((𝜓 ∧ (𝜑𝜃)) → (𝜂𝜏))       (𝜑 → ((𝜓𝜒) → (𝜓 → (𝜃𝜏))))
 
20-Aug-2022brimralrspcev 3982 Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022.)
((𝐵𝑋 ∧ ∀𝑦𝑌 ((𝜑𝐴𝑅𝐵) → 𝜓)) → ∃𝑥𝑋𝑦𝑌 ((𝜑𝐴𝑅𝑥) → 𝜓))
 
20-Aug-2022brralrspcev 3981 Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.)
((𝐵𝑋 ∧ ∀𝑦𝑌 𝐴𝑅𝐵) → ∃𝑥𝑋𝑦𝑌 𝐴𝑅𝑥)
 
19-Aug-2022seq3f1olemstep 10267 Lemma for seq3f1o 10270. Given a permutation which is constant up to a point, supply a new one which is constant for one more position. (Contributed by Jim Kingdon, 19-Aug-2022.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   (𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)    &   (𝜑 → (seq𝑀( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))    &   𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))       (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝐾)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
 
18-Aug-2022seq3f1olemp 10268 Lemma for seq3f1o 10270. Existence of a constant permutation of (𝑀...𝑁) which leads to the same sum as the permutation 𝐹 itself. (Contributed by Jim Kingdon, 18-Aug-2022.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   𝐿 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))    &   𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))       (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
 
17-Aug-2022seq3f1oleml 10269 Lemma for seq3f1o 10270. This is more or less the result, but stated in terms of 𝐹 and 𝐺 without 𝐻. 𝐿 and 𝐻 may differ in terms of what happens to terms after 𝑁. The terms after 𝑁 don't matter for the value at 𝑁 but we need some definition given the way our theorems concerning seq work. (Contributed by Jim Kingdon, 17-Aug-2022.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   𝐿 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))       (𝜑 → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
 
17-Aug-2022imbrov2fvoveq 5792 Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.)
(𝑋 = 𝑌 → (𝜑𝜓))       (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺𝑌) · 𝑂))𝑅𝐴)))
 
16-Aug-2022fmpttd 5568 Version of fmptd 5567 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.)
((𝜑𝑥𝐴) → 𝐵𝐶)       (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
 
15-Aug-2022isummolemnm 11141 Lemma for summodc 11145. (Contributed by Jim Kingdon, 15-Aug-2022.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))    &   (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)    &   (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)       (𝜑𝑁 = 𝑀)
 
14-Aug-20222fveq3 5419 Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.)
(𝐴 = 𝐵 → (𝐹‘(𝐺𝐴)) = (𝐹‘(𝐺𝐵)))
 
13-Aug-2022exmidsbth 13208 The Schroeder-Bernstein Theorem is equivalent to excluded middle. This is Metamath 100 proof #25. The forward direction (isbth 6848) is the proof of the Schroeder-Bernstein Theorem from the Metamath Proof Explorer database (in which excluded middle holds), but adapted to use EXMID as an antecedent rather than being unconditionally true, as in the non-intuitionist proof at https://us.metamath.org/mpeuni/sbth.html 6848.

The reverse direction (exmidsbthr 13207) is the one which establishes that Schroeder-Bernstein implies excluded middle. This resolves the question of whether we will be able to prove Schroeder-Bernstein from our axioms in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.)

(EXMID ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦))
 
13-Aug-2022fv0p1e1 8828 Function value at 𝑁 + 1 with 𝑁 replaced by 0. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
(𝑁 = 0 → (𝐹‘(𝑁 + 1)) = (𝐹‘1))
 
13-Aug-2022ovanraleqv 5791 Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
(𝐵 = 𝑋 → (𝜑𝜓))       (𝐵 = 𝑋 → (∀𝑥𝑉 (𝜑 ∧ (𝐴 · 𝐵) = 𝐶) ↔ ∀𝑥𝑉 (𝜓 ∧ (𝐴 · 𝑋) = 𝐶)))
 
12-Aug-2022stbid 817 The equivalent of a stable proposition is stable. (Contributed by Jim Kingdon, 12-Aug-2022.)
(𝜑 → (𝜓𝜒))       (𝜑 → (STAB 𝜓STAB 𝜒))
 
11-Aug-2022exmidsbthr 13207 The Schroeder-Bernstein Theorem implies excluded middle. Theorem 1 of [PradicBrown2022], p. 1. (Contributed by Jim Kingdon, 11-Aug-2022.)
(∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → EXMID)
 
11-Aug-2022exmidsbthrlem 13206 Lemma for exmidsbthr 13207. (Contributed by Jim Kingdon, 11-Aug-2022.)
𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))       (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → EXMID)
 
10-Aug-2022nninfomni 13204 is omniscient. Corollary 3.7 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 10-Aug-2022.)
∈ Omni
 
10-Aug-2022nninfomnilem 13203 Lemma for nninfomni 13204. (Contributed by Jim Kingdon, 10-Aug-2022.)
𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))        ∈ Omni
 
10-Aug-2022nninfex 13194 is a set. (Contributed by Jim Kingdon, 10-Aug-2022.)
∈ V
 
10-Aug-2022vpwex 4098 Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4099 from vpwex 4098. (Revised by BJ, 10-Aug-2022.)
𝒫 𝑥 ∈ V
 
9-Aug-2022nninfsel 13202 𝐸 is a selection function for . Theorem 3.6 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 9-Aug-2022.)
𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))    &   (𝜑𝑄 ∈ (2o𝑚))    &   (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)       (𝜑 → ∀𝑝 ∈ ℕ (𝑄𝑝) = 1o)
 
9-Aug-2022nninfsellemeqinf 13201 Lemma for nninfsel 13202. (Contributed by Jim Kingdon, 9-Aug-2022.)
𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))    &   (𝜑𝑄 ∈ (2o𝑚))    &   (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)       (𝜑 → (𝐸𝑄) = (𝑖 ∈ ω ↦ 1o))
 
9-Aug-2022nninfsellemqall 13200 Lemma for nninfsel 13202. (Contributed by Jim Kingdon, 9-Aug-2022.)
𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))    &   (𝜑𝑄 ∈ (2o𝑚))    &   (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)    &   (𝜑𝑁 ∈ ω)       (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = 1o)
 
9-Aug-2022nninfsellemeq 13199 Lemma for nninfsel 13202. (Contributed by Jim Kingdon, 9-Aug-2022.)
𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))    &   (𝜑𝑄 ∈ (2o𝑚))    &   (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)    &   (𝜑𝑁 ∈ ω)    &   (𝜑 → ∀𝑘𝑁 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)    &   (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = ∅)       (𝜑 → (𝐸𝑄) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
 
8-Aug-2022nninfsellemcl 13196 Lemma for nninfself 13198. (Contributed by Jim Kingdon, 8-Aug-2022.)
((𝑄 ∈ (2o𝑚) ∧ 𝑁 ∈ ω) → if(∀𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o)
 
8-Aug-2022nninfsellemdc 13195 Lemma for nninfself 13198. Showing that the selection function is well defined. (Contributed by Jim Kingdon, 8-Aug-2022.)
((𝑄 ∈ (2o𝑚) ∧ 𝑁 ∈ ω) → DECID𝑘 ∈ suc 𝑁(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
 
8-Aug-2022ss1oel2o 13178 Any subset of ordinal one being an element of ordinal two is equivalent to excluded middle. A variation of exmid01 4116 which more directly illustrates the contrast with el2oss1o 13177. (Contributed by Jim Kingdon, 8-Aug-2022.)
(EXMID ↔ ∀𝑥(𝑥 ⊆ 1o𝑥 ∈ 2o))
 
8-Aug-2022el2oss1o 13177 Being an element of ordinal two implies being a subset of ordinal one. The converse is equivalent to excluded middle by ss1oel2o 13178. (Contributed by Jim Kingdon, 8-Aug-2022.)
(𝐴 ∈ 2o𝐴 ⊆ 1o)
 
7-Aug-2022nnti 13180 Ordering on a natural number generates a tight apartness. (Contributed by Jim Kingdon, 7-Aug-2022.)
(𝜑𝐴 ∈ ω)       ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 E 𝑣 ∧ ¬ 𝑣 E 𝑢)))
 
6-Aug-2022nninfself 13198 Domain and range of the selection function for . (Contributed by Jim Kingdon, 6-Aug-2022.)
𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))       𝐸:(2o𝑚)⟶ℕ
 
6-Aug-2022nninfsellemsuc 13197 Lemma for nninfself 13198. (Contributed by Jim Kingdon, 6-Aug-2022.)
((𝑄 ∈ (2o𝑚) ∧ 𝐽 ∈ ω) → if(∀𝑘 ∈ suc suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ⊆ if(∀𝑘 ∈ suc 𝐽(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
 
4-Aug-2022nninfalllemn 13191 Lemma for nninfall 13193. Mapping of a natural number to an element of . (Contributed by Jim Kingdon, 4-Aug-2022.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑁 ∈ ω)    &   (𝜑 → ∀𝑥𝑁 (𝑃𝑥) = 1o)    &   (𝜑 → (𝑃𝑁) = ∅)       (𝜑𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
 
4-Aug-2022nninff 13187 An element of is a sequence of zeroes and ones. (Contributed by Jim Kingdon, 4-Aug-2022.)
(𝐴 ∈ ℕ𝐴:ω⟶2o)
 
1-Aug-2022nninfall 13193 Given a decidable predicate on , showing it holds for natural numbers and the point at infinity suffices to show it holds everywhere. The sense in which 𝑄 is a decidable predicate is that it assigns a value of either or 1o (which can be thought of as false and true) to every element of . Lemma 3.5 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
(𝜑𝑄 ∈ (2o𝑚))    &   (𝜑 → (𝑄‘(𝑥 ∈ ω ↦ 1o)) = 1o)    &   (𝜑 → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)       (𝜑 → ∀𝑝 ∈ ℕ (𝑄𝑝) = 1o)
 
1-Aug-2022nninfalllem1 13192 Lemma for nninfall 13193. (Contributed by Jim Kingdon, 1-Aug-2022.)
(𝜑𝑄 ∈ (2o𝑚))    &   (𝜑 → (𝑄‘(𝑥 ∈ ω ↦ 1o)) = 1o)    &   (𝜑 → ∀𝑛 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑 → (𝑄𝑃) = ∅)       (𝜑 → ∀𝑛 ∈ ω (𝑃𝑛) = 1o)
 
1-Aug-2022peano3nninf 13190 The successor function on is never zero. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))       (𝐴 ∈ ℕ → (𝑆𝐴) ≠ (𝑥 ∈ ω ↦ ∅))
 
31-Jul-2022peano4nninf 13189 The successor function on is one to one. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 31-Jul-2022.)
𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))       𝑆:ℕ1-1→ℕ
 
31-Jul-20221lt2o 6332 Ordinal one is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.)
1o ∈ 2o
 
31-Jul-20220lt2o 6331 Ordinal zero is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.)
∅ ∈ 2o
 
31-Jul-2022nnpredcl 4531 The predecessor of a natural number is a natural number. This theorem is most interesting when the natural number is a successor (as seen in theorems like onsucuni2 4474) but also holds when it is by uni0 3758. (Contributed by Jim Kingdon, 31-Jul-2022.)
(𝐴 ∈ ω → 𝐴 ∈ ω)
 
31-Jul-2022nnsucpred 4525 The successor of the precedessor of a nonzero natural number. (Contributed by Jim Kingdon, 31-Jul-2022.)
((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → suc 𝐴 = 𝐴)
 
30-Jul-2022nnsf 13188 Domain and range of 𝑆. Part of Definition 3.3 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 30-Jul-2022.)
𝑆 = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))       𝑆:ℕ⟶ℕ
 
29-Jul-2022fodjuomnilemres 7013 Lemma for fodjuomni 7014. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.)
(𝜑𝑂 ∈ Omni)    &   (𝜑𝐹:𝑂onto→(𝐴𝐵))    &   𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))       (𝜑 → (∃𝑥 𝑥𝐴𝐴 = ∅))
 
28-Jul-2022eqifdc 3501 Expansion of an equality with a conditional operator. (Contributed by Jim Kingdon, 28-Jul-2022.)
(DECID 𝜑 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴 = 𝐵) ∨ (¬ 𝜑𝐴 = 𝐶))))
 
27-Jul-2022fodjuomni 7014 A condition which ensures 𝐴 is either inhabited or empty. Lemma 3.2 of [PradicBrown2022], p. 4. (Contributed by Jim Kingdon, 27-Jul-2022.)
(𝜑𝑂 ∈ Omni)    &   (𝜑𝐹:𝑂onto→(𝐴𝐵))       (𝜑 → (∃𝑥 𝑥𝐴𝐴 = ∅))
 
27-Jul-2022fodjuomnilemdc 7009 Lemma for fodjuomni 7014. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.)
(𝜑𝐹:𝑂onto→(𝐴𝐵))       ((𝜑𝑋𝑂) → DECID𝑧𝐴 (𝐹𝑋) = (inl‘𝑧))
 
25-Jul-2022djudom 6971 Dominance law for disjoint union. (Contributed by Jim Kingdon, 25-Jul-2022.)
((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≼ (𝐵𝐷))
 
23-Jul-2022fvoveq1 5790 Equality theorem for nested function and operation value. Closed form of fvoveq1d 5789. (Contributed by AV, 23-Jul-2022.)
(𝐴 = 𝐵 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶)))
 
23-Jul-2022fvoveq1d 5789 Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶)))
 
17-Jul-2022inftonninf 10207 The mapping of +∞ into is the sequence of all ones. (Contributed by Jim Kingdon, 17-Jul-2022.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))    &   𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})       (𝐼‘+∞) = (𝑥 ∈ ω ↦ 1o)
 
17-Jul-20221tonninf 10206 The mapping of one into is a sequence which is a one followed by zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))    &   𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})       (𝐼‘1) = (𝑥 ∈ ω ↦ if(𝑥 = ∅, 1o, ∅))
 
17-Jul-20220tonninf 10205 The mapping of zero into is the sequence of all zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))    &   𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})       (𝐼‘0) = (𝑥 ∈ ω ↦ ∅)
 
16-Jul-2022fxnn0nninf 10204 A function from 0* into . (Contributed by Jim Kingdon, 16-Jul-2022.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))    &   𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})       𝐼:ℕ0*⟶ℕ
 
16-Jul-2022fnn0nninf 10203 A function from 0 into . (Contributed by Jim Kingdon, 16-Jul-2022.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))       (𝐹𝐺):ℕ0⟶ℕ
 
15-Jul-2022mapdom1g 6734 Order-preserving property of set exponentiation. (Contributed by Jim Kingdon, 15-Jul-2022.)
((𝐴𝐵𝐶𝑉) → (𝐴𝑚 𝐶) ≼ (𝐵𝑚 𝐶))
 
14-Jul-20220nninf 13186 The zero element of (the constant sequence equal to ). (Contributed by Jim Kingdon, 14-Jul-2022.)
(ω × {∅}) ∈ ℕ
 
14-Jul-2022nnnninf 7016 Elements of corresponding to natural numbers. The natural number 𝑁 corresponds to a sequence of 𝑁 ones followed by zeroes. Contrast to a sequence which is all ones as seen at infnninf 7015. Remark/TODO: the theorem still holds if 𝑁 = ω, that is, the antecedent could be weakened to 𝑁 ∈ suc ω. (Contributed by Jim Kingdon, 14-Jul-2022.)
(𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
 
14-Jul-2022infnninf 7015 The point at infinity in (the constant sequence equal to 1o). (Contributed by Jim Kingdon, 14-Jul-2022.)
(ω × {1o}) ∈ ℕ
 
14-Jul-2022df-nninf 7000 Define the set of nonincreasing sequences in 2o𝑚 ω. Definition in Section 3.1 of [Pierik], p. 15. If we assumed excluded middle, this would be essentially the same as 0* as defined at df-xnn0 9034 but in its absence the relationship between the two is more complicated. This definition would function much the same whether we used ω or 0, but the former allows us to take advantage of 2o = {∅, 1o} (df2o3 6320) so we adopt it. (Contributed by Jim Kingdon, 14-Jul-2022.)
= {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
 
13-Jul-2022uzind4i 9380 Induction on the upper integers that start at 𝑀. The first four give us the substitution instances we need, and the last two are the basis and the induction step. This is a stronger version of uzind4 9376 assuming that 𝜓 holds unconditionally. Notice that 𝑁 ∈ (ℤ𝑀) implies that the lower bound 𝑀 is an integer (𝑀 ∈ ℤ, see eluzel2 9324). (Contributed by NM, 4-Sep-2005.) (Revised by AV, 13-Jul-2022.)
(𝑗 = 𝑀 → (𝜑𝜓))    &   (𝑗 = 𝑘 → (𝜑𝜒))    &   (𝑗 = (𝑘 + 1) → (𝜑𝜃))    &   (𝑗 = 𝑁 → (𝜑𝜏))    &   𝜓    &   (𝑘 ∈ (ℤ𝑀) → (𝜒𝜃))       (𝑁 ∈ (ℤ𝑀) → 𝜏)
 
13-Jul-2022enomni 7004 Omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Limited Principle of Omniscience as either ω ∈ Omni or 0 ∈ Omni. The former is a better match to conventional notation in the sense that df2o3 6320 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 13-Jul-2022.)
(𝐴𝐵 → (𝐴 ∈ Omni ↔ 𝐵 ∈ Omni))
 
13-Jul-2022enomnilem 7003 Lemma for enomni 7004. One direction of the biconditional. (Contributed by Jim Kingdon, 13-Jul-2022.)
(𝐴𝐵 → (𝐴 ∈ Omni → 𝐵 ∈ Omni))
 
13-Jul-2022isomnimap 7002 The predicate of being omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 13-Jul-2022.)
(𝐴𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ (2o𝑚 𝐴)(∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)))
 
12-Jul-2022finexdc 6789 Decidability of existence, over a finite set and defined by a decidable proposition. (Contributed by Jim Kingdon, 12-Jul-2022.)
((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → DECID𝑥𝐴 𝜑)
 
11-Jul-2022dfrex2fin 6790 Relationship between universal and existential quantifiers over a finite set. Remark in Section 2.2.1 of [Pierik], p. 8. Although Pierik does not mention the decidability condition explicitly, it does say "only finitely many x to check" which means there must be some way of checking each value of x. (Contributed by Jim Kingdon, 11-Jul-2022.)
((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑))
 
10-Jul-2022djuinj 6984 The "domain-disjoint-union" of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
(𝜑 → Fun 𝑅)    &   (𝜑 → Fun 𝑆)    &   (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅)       (𝜑 → Fun (𝑅d 𝑆))
 
10-Jul-2022djudm 6983 The domain of the "domain-disjoint-union" is the disjoint union of the domains. Remark: its range is the (standard) union of the ranges. (Contributed by BJ, 10-Jul-2022.)
dom (𝐹d 𝐺) = (dom 𝐹 ⊔ dom 𝐺)
 
10-Jul-2022djufun 6982 The "domain-disjoint-union" of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
(𝜑 → Fun 𝐹)    &   (𝜑 → Fun 𝐺)       (𝜑 → Fun (𝐹d 𝐺))
 
10-Jul-2022df-djud 6981 The "domain-disjoint-union" of two relations: if 𝑅 ⊆ (𝐴 × 𝑋) and 𝑆 ⊆ (𝐵 × 𝑋) are two binary relations, then (𝑅d 𝑆) is the binary relation from (𝐴𝐵) to 𝑋 having the universal property of disjoint unions (see updjud 6960 in the case of functions).

Remark: the restrictions to dom 𝑅 (resp. dom 𝑆) are not necessary since extra stuff would be thrown away in the post-composition with 𝑅 (resp. 𝑆), as in df-case 6962, but they are explicitly written for clarity. (Contributed by MC and BJ, 10-Jul-2022.)

(𝑅d 𝑆) = ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆)))
 
10-Jul-2022casef1 6968 The "case" construction of two injective functions with disjoint ranges is an injective function. (Contributed by BJ, 10-Jul-2022.)
(𝜑𝐹:𝐴1-1𝑋)    &   (𝜑𝐺:𝐵1-1𝑋)    &   (𝜑 → (ran 𝐹 ∩ ran 𝐺) = ∅)       (𝜑 → case(𝐹, 𝐺):(𝐴𝐵)–1-1𝑋)
 
10-Jul-2022caseinj 6967 The "case" construction of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
(𝜑 → Fun 𝑅)    &   (𝜑 → Fun 𝑆)    &   (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅)       (𝜑 → Fun case(𝑅, 𝑆))
 
10-Jul-2022casef 6966 The "case" construction of two functions is a function on the disjoint union of their domains. (Contributed by BJ, 10-Jul-2022.)
(𝜑𝐹:𝐴𝑋)    &   (𝜑𝐺:𝐵𝑋)       (𝜑 → case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋)
 
10-Jul-2022caserel 6965 The "case" construction of two relations is a relation, with bounds on its domain and codomain. Typically, the "case" construction is used when both relations have a common codomain. (Contributed by BJ, 10-Jul-2022.)
case(𝑅, 𝑆) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
 
10-Jul-2022casedm 6964 The domain of the "case" construction is the disjoint union of the domains. TODO (although less important): ran case(𝐹, 𝐺) = (ran 𝐹 ∪ ran 𝐺). (Contributed by BJ, 10-Jul-2022.)
dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺)
 
10-Jul-2022casefun 6963 The "case" construction of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
(𝜑 → Fun 𝐹)    &   (𝜑 → Fun 𝐺)       (𝜑 → Fun case(𝐹, 𝐺))
 
10-Jul-2022df-case 6962 The "case" construction: if 𝐹:𝐴𝑋 and 𝐺:𝐵𝑋 are functions, then case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 6960. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.)
case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
 
10-Jul-2022cocnvss 5059 Upper bound for the composed of a relation and an inverse relation. (Contributed by BJ, 10-Jul-2022.)
(𝑆𝑅) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅))
 
10-Jul-2022cocnvres 5058 Restricting a relation and a converse relation when they are composed together (Contributed by BJ, 10-Jul-2022.)
(𝑆𝑅) = ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆))
 
10-Jul-2022cossxp2 5057 The composition of two relations is a relation, with bounds on its domain and codomain. (Contributed by BJ, 10-Jul-2022.)
(𝜑𝑅 ⊆ (𝐴 × 𝐵))    &   (𝜑𝑆 ⊆ (𝐵 × 𝐶))       (𝜑 → (𝑆𝑅) ⊆ (𝐴 × 𝐶))
 
10-Jul-2022rnxpss2 4967 Upper bound for the range of a binary relation. (Contributed by BJ, 10-Jul-2022.)
(𝑅 ⊆ (𝐴 × 𝐵) → ran 𝑅𝐵)
 
10-Jul-2022dmxpss2 4966 Upper bound for the domain of a binary relation. (Contributed by BJ, 10-Jul-2022.)
(𝑅 ⊆ (𝐴 × 𝐵) → dom 𝑅𝐴)
 
10-Jul-2022elco 4700 Elements of a composed relation. (Contributed by BJ, 10-Jul-2022.)
(𝐴 ∈ (𝑅𝑆) ↔ ∃𝑥𝑦𝑧(𝐴 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝑆𝑦𝑦𝑅𝑧)))
 
9-Jul-2022geoihalfsum 11284 Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 11281. This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... 11283 proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.) (Proof shortened by AV, 9-Jul-2022.)
Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1
 
9-Jul-2022exmidfodomrlemrALT 7052 The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. An alternative proof of exmidfodomrlemr 7051. In particular, this proof uses eldju 6946 instead of djur 6947 and avoids djulclb 6933. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Jim Kingdon, 9-Jul-2022.)
(∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → EXMID)
 
9-Jul-2022exmidfodomrlemreseldju 7049 Lemma for exmidfodomrlemrALT 7052. A variant of eldju 6946. (Contributed by Jim Kingdon, 9-Jul-2022.)
(𝜑𝐴 ⊆ 1o)    &   (𝜑𝐵 ∈ (𝐴 ⊔ 1o))       (𝜑 → ((∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾ 1o)‘∅)))
 
8-Jul-2022abn0m 3383 Inhabited class abstraction. (Contributed by Jim Kingdon, 8-Jul-2022.)
(∃𝑦 𝑦 ∈ {𝑥𝜑} ↔ ∃𝑥𝜑)
 
7-Jul-2022fvco4 5486 Value of a composition. (Contributed by BJ, 7-Jul-2022.)
(((𝐾:𝐴𝑋 ∧ (𝐻𝐾) = 𝐹) ∧ (𝑢𝐴𝑥 = (𝐾𝑢))) → (𝐻𝑥) = (𝐹𝑢))
 
6-Jul-2022toponrestid 12177 Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.)
𝐴 ∈ (TopOn‘𝐵)       𝐴 = (𝐴t 𝐵)
 
6-Jul-2022djuunr 6944 The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 6-Jul-2022.)
(ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴𝐵)
 
6-Jul-2022djurclr 6928 Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
(𝐶𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴𝐵))
 
6-Jul-2022djulclr 6927 Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
(𝐶𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴𝐵))
 
6-Jul-2022foelrn 5647 Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.) (Proof shortened by BJ, 6-Jul-2022.)
((𝐹:𝐴onto𝐵𝐶𝐵) → ∃𝑥𝐴 𝐶 = (𝐹𝑥))
 
6-Jul-2022foima2 5646 Given an onto function, an element is in its codomain if and only if it is the image of an element of its domain (see foima 5345). (Contributed by BJ, 6-Jul-2022.)
(𝐹:𝐴onto𝐵 → (𝑌𝐵 ↔ ∃𝑥𝐴 𝑌 = (𝐹𝑥)))
 
6-Jul-2022f1rn 5324 The range of a one-to-one mapping. (Contributed by BJ, 6-Jul-2022.)
(𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
 
5-Jul-2022distspace 12493 A set 𝑋 together with a (distance) function 𝐷 which is a pseudometric is a distance space (according to E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006), i.e. a (base) set 𝑋 equipped with a distance 𝐷, which is a mapping of two elements of the base set to the (extended) reals and which is nonnegative, symmetric and equal to 0 if the two elements are equal. (Contributed by AV, 15-Oct-2021.) (Revised by AV, 5-Jul-2022.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ (𝐴𝐷𝐴) = 0) ∧ (0 ≤ (𝐴𝐷𝐵) ∧ (𝐴𝐷𝐵) = (𝐵𝐷𝐴))))
 
4-Jul-2022djurclALT 12998 Shortening of djurcl 6930 using djucllem 12996. (Contributed by BJ, 4-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐶𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴𝐵))
 
4-Jul-2022djulclALT 12997 Shortening of djulcl 6929 using djucllem 12996. (Contributed by BJ, 4-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐶𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴𝐵))
 
4-Jul-2022djucllem 12996 Lemma for djulcl 6929 and djurcl 6930. (Contributed by BJ, 4-Jul-2022.)
𝑋 ∈ V    &   𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)       (𝐴𝐵 → ((𝐹𝐵)‘𝐴) ∈ ({𝑋} × 𝐵))
 
4-Jul-2022inresflem 6938 Lemma for inlresf1 6939 and inrresf1 6940. (Contributed by BJ, 4-Jul-2022.)
𝐹:𝐴1-1-onto→({𝑋} × 𝐴)    &   (𝑥𝐴 → (𝐹𝑥) ∈ 𝐵)       𝐹:𝐴1-1𝐵
 
4-Jul-2022djuf1olemr 6932 Lemma for djulf1or 6934 and djurf1or 6935. For a version of this lemma with 𝐹 defined on 𝐴 and no restriction in the conclusion, see djuf1olem 6931. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
𝑋 ∈ V    &   𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)       (𝐹𝐴):𝐴1-1-onto→({𝑋} × 𝐴)
 
4-Jul-2022djuf1olem 6931 Lemma for djulf1o 6936 and djurf1o 6937. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
𝑋 ∈ V    &   𝐹 = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩)       𝐹:𝐴1-1-onto→({𝑋} × 𝐴)
 
4-Jul-2022snexxph 6831 A case where the antecedent of snexg 4103 is not needed. The class {𝑥𝜑} is from dcextest 4490. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.)
{{𝑥𝜑}} ∈ V
 
4-Jul-20221oex 6314 Ordinal 1 is a set. (Contributed by BJ, 4-Jul-2022.)
1o ∈ V
 
4-Jul-2022resflem 5577 A lemma to bound the range of a restriction. The conclusion would also hold with (𝑋𝑌) in place of 𝑌 (provided 𝑥 does not occur in 𝑋). If that stronger result is needed, it is however simpler to use the instance of resflem 5577 where (𝑋𝑌) is substituted for 𝑌 (in both the conclusion and the third hypothesis). (Contributed by BJ, 4-Jul-2022.)
(𝜑𝐹:𝑉𝑋)    &   (𝜑𝐴𝑉)    &   ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝑌)       (𝜑 → (𝐹𝐴):𝐴𝑌)
 
4-Jul-2022f1ff1 5331 If a function is one-to-one from A to B and is also a function from A to C, then it is a one-to-one function from A to C. (Contributed by BJ, 4-Jul-2022.)
((𝐹:𝐴1-1𝐵𝐹:𝐴𝐶) → 𝐹:𝐴1-1𝐶)
 
3-Jul-2022fnmpoovd 6105 A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) (Revised by AV, 3-Jul-2022.)
(𝜑𝑀 Fn (𝐴 × 𝐵))    &   ((𝑖 = 𝑎𝑗 = 𝑏) → 𝐷 = 𝐶)    &   ((𝜑𝑖𝐴𝑗𝐵) → 𝐷𝑈)    &   ((𝜑𝑎𝐴𝑏𝐵) → 𝐶𝑉)       (𝜑 → (𝑀 = (𝑎𝐴, 𝑏𝐵𝐶) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = 𝐷))
 
3-Jul-2022dcextest 4490 If it is decidable whether {𝑥𝜑} is a set, then ¬ 𝜑 is decidable (where 𝑥 does not occur in 𝜑). From this fact, we can deduce (outside the formal system, since we cannot quantify over classes) that if it is decidable whether any class is a set, then "weak excluded middle" (that is, any negated proposition ¬ 𝜑 is decidable) holds. (Contributed by Jim Kingdon, 3-Jul-2022.)
DECID {𝑥𝜑} ∈ V       DECID ¬ 𝜑
 
3-Jul-2022notnotsnex 4106 A singleton is never a proper class. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jul-2022.)
¬ ¬ {𝐴} ∈ V
 
2-Jul-2022exmidfodomrlemeldju 7048 Lemma for exmidfodomr 7053. A variant of djur 6947. (Contributed by Jim Kingdon, 2-Jul-2022.)
(𝜑𝐴 ⊆ 1o)    &   (𝜑𝐵 ∈ (𝐴 ⊔ 1o))       (𝜑 → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅)))
 
2-Jul-2022djune 6956 Left and right injection never produce equal values. (Contributed by Jim Kingdon, 2-Jul-2022.)
((𝐴𝑉𝐵𝑊) → (inl‘𝐴) ≠ (inr‘𝐵))
 
2-Jul-2022djulclb 6933 Left biconditional closure of disjoint union. (Contributed by Jim Kingdon, 2-Jul-2022.)
(𝐶𝑉 → (𝐶𝐴 ↔ (inl‘𝐶) ∈ (𝐴𝐵)))
 
1-Jul-2022exmidfodomr 7053 Excluded middle is equivalent to the existence of a mapping from any set onto any inhabited set that it dominates. (Contributed by Jim Kingdon, 1-Jul-2022.)
(EXMID ↔ ∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦))
 
1-Jul-2022exmidfodomrlemr 7051 The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.)
(∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → EXMID)
 
1-Jul-2022exmidfodomrlemim 7050 Excluded middle implies the existence of a mapping from any set onto any inhabited set that it dominates. Proposition 1.1 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.)
(EXMID → ∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦))
 
1-Jul-2022dju1p1e2 7046 Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.)
(1o ⊔ 1o) ≈ 2o
 
1-Jul-2022notm0 3378 A class is not inhabited if and only if it is empty. (Contributed by Jim Kingdon, 1-Jul-2022.)
(¬ ∃𝑥 𝑥𝐴𝐴 = ∅)
 
30-Jun-2022exmidomni 7007 Excluded middle is equivalent to every set being omniscient. (Contributed by BJ and Jim Kingdon, 30-Jun-2022.)
(EXMID ↔ ∀𝑥 𝑥 ∈ Omni)
 
30-Jun-2022exmidpw 6795 Excluded middle is equivalent to the power set of 1o having two elements. Remark of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 30-Jun-2022.)
(EXMID ↔ 𝒫 1o ≈ 2o)
 
29-Jun-2022exmidomniim 7006 Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7007. (Contributed by Jim Kingdon, 29-Jun-2022.)
(EXMID → ∀𝑥 𝑥 ∈ Omni)
 
29-Jun-2022dfrex2dc 2426 Relationship between restricted universal and existential quantifiers. (Contributed by Jim Kingdon, 29-Jun-2022.)
(DECID𝑥𝐴 𝜑 → (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑))
 
28-Jun-2022finomni 7005 A finite set is omniscient. Remark right after Definition 3.1 of [Pierik], p. 14. (Contributed by Jim Kingdon, 28-Jun-2022.)
(𝐴 ∈ Fin → 𝐴 ∈ Omni)
 
28-Jun-2022isomni 7001 The predicate of being omniscient. (Contributed by Jim Kingdon, 28-Jun-2022.)
(𝐴𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))))
 
28-Jun-2022df-omni 6999 An omniscient set is one where we can decide whether a predicate (here represented by a function 𝑓) holds (is equal to 1o) for all elements or fails to hold (is equal to ) for some element. Definition 3.1 of [Pierik], p. 14.

In particular, ω ∈ Omni is known as the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 28-Jun-2022.)

Omni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥𝑦 (𝑓𝑥) = ∅ ∨ ∀𝑥𝑦 (𝑓𝑥) = 1o))}
 
28-Jun-2022updjud 6960 Universal property of the disjoint union. (Proposed by BJ, 25-Jun-2022.) (Contributed by AV, 28-Jun-2022.)
(𝜑𝐹:𝐴𝐶)    &   (𝜑𝐺:𝐵𝐶)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 → ∃!(:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺))
 
28-Jun-2022inrresf1 6940 The right injection restricted to the right class of a disjoint union is an injective function from the right class into the disjoint union. (Contributed by AV, 28-Jun-2022.)
(inr ↾ 𝐵):𝐵1-1→(𝐴𝐵)
 
28-Jun-2022inlresf1 6939 The left injection restricted to the left class of a disjoint union is an injective function from the left class into the disjoint union. (Contributed by AV, 28-Jun-2022.)
(inl ↾ 𝐴):𝐴1-1→(𝐴𝐵)
 
28-Jun-2022djuex 6921 The disjoint union of sets is a set. See also the more precise djuss 6948. (Contributed by AV, 28-Jun-2022.)
((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
 
28-Jun-2022f1resf1 5333 The restriction of an injective function is injective. (Contributed by AV, 28-Jun-2022.)
(((𝐹:𝐴1-1𝐵𝐶𝐴) ∧ (𝐹𝐶):𝐶𝐷) → (𝐹𝐶):𝐶1-1𝐷)
 
27-Jun-2022updjudhcoinrg 6959 The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022.)
(𝜑𝐹:𝐴𝐶)    &   (𝜑𝐺:𝐵𝐶)    &   𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))       (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) = 𝐺)
 
27-Jun-2022updjudhcoinlf 6958 The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the left injection equals the first function. (Contributed by AV, 27-Jun-2022.)
(𝜑𝐹:𝐴𝐶)    &   (𝜑𝐺:𝐵𝐶)    &   𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))       (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) = 𝐹)
 
27-Jun-20222ndinr 6955 The second component of the value of a right injection is its argument. (Contributed by AV, 27-Jun-2022.)
(𝑋𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋)
 
27-Jun-20221stinr 6954 The first component of the value of a right injection is 1o. (Contributed by AV, 27-Jun-2022.)
(𝑋𝑉 → (1st ‘(inr‘𝑋)) = 1o)
 
27-Jun-20222ndinl 6953 The second component of the value of a left injection is its argument. (Contributed by AV, 27-Jun-2022.)
(𝑋𝑉 → (2nd ‘(inl‘𝑋)) = 𝑋)
 
27-Jun-20221stinl 6952 The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.)
(𝑋𝑉 → (1st ‘(inl‘𝑋)) = ∅)
 
26-Jun-2022updjudhf 6957 The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.)
(𝜑𝐹:𝐴𝐶)    &   (𝜑𝐺:𝐵𝐶)    &   𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))       (𝜑𝐻:(𝐴𝐵)⟶𝐶)
 
26-Jun-2022eldju2ndr 6951 The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022.)
((𝑋 ∈ (𝐴𝐵) ∧ (1st𝑋) ≠ ∅) → (2nd𝑋) ∈ 𝐵)
 
26-Jun-2022eldju2ndl 6950 The second component of an element of a disjoint union is an element of the left class of the disjoint union if its first component is the empty set. (Contributed by AV, 26-Jun-2022.)
((𝑋 ∈ (𝐴𝐵) ∧ (1st𝑋) = ∅) → (2nd𝑋) ∈ 𝐴)
 
26-Jun-2022eldju1st 6949 The first component of an element of a disjoint union is either or 1o. (Contributed by AV, 26-Jun-2022.)
(𝑋 ∈ (𝐴𝐵) → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))
 
25-Jun-2022djuss 6948 A disjoint union is a subset of a Cartesian product. (Contributed by AV, 25-Jun-2022.)
(𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))
 
23-Jun-2022eldju 6946 Element of a disjoint union. (Contributed by BJ and Jim Kingdon, 23-Jun-2022.)
(𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
 
23-Jun-2022nfdju 6920 Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
𝑥𝐴    &   𝑥𝐵       𝑥(𝐴𝐵)
 
23-Jun-2022djueq2 6919 Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
(𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
 
23-Jun-2022djueq1 6918 Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
(𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
 
23-Jun-2022djueq12 6917 Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
 
22-Jun-2022djurf1o 6937 The right injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.)
inr:V–1-1-onto→({1o} × V)
 
22-Jun-2022djulf1o 6936 The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.)
inl:V–1-1-onto→({∅} × V)
 
22-Jun-2022djurf1or 6935 The right injection function on all sets is one to one and onto. (Contributed by BJ and Jim Kingdon, 22-Jun-2022.)
(inr ↾ 𝐴):𝐴1-1-onto→({1o} × 𝐴)
 
22-Jun-2022djulf1or 6934 The left injection function on all sets is one to one and onto. (Contributed by BJ and Jim Kingdon, 22-Jun-2022.)
(inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴)
 
21-Jun-2022djuinr 6941 The ranges of any left and right injections are disjoint. Remark: the extra generality offered by the two restrictions makes the theorem more readily usable (e.g., by djudom 6971 and djufun 6982) while the simpler statement (ran inl ∩ ran inr) = ∅ is easily recovered from it by substituting V for both 𝐴 and 𝐵 as done in casefun 6963). (Contributed by BJ and Jim Kingdon, 21-Jun-2022.)
(ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = ∅
 
21-Jun-2022djurcl 6930 Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
(𝐶𝐵 → (inr‘𝐶) ∈ (𝐴𝐵))
 
21-Jun-2022djulcl 6929 Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
(𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))
 
21-Jun-2022df-inr 6926 Right injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022.)
inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
 
21-Jun-2022df-inl 6925 Left injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022.)
inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
 
20-Jun-2022df-dju 6916 Disjoint union of two classes. This is a way of creating a class which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.)
(𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
 
18-Jun-2022exmidundif 4124 Excluded middle is equivalent to every subset having a complement. That is, the union of a subset and its relative complement being the whole set. Although special cases such as undifss 3438 and undifdcss 6804 are provable, the full statement is equivalent to excluded middle as shown here. (Contributed by Jim Kingdon, 18-Jun-2022.)
(EXMID ↔ ∀𝑥𝑦(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦))
 
18-Jun-2022exmidel 4123 Excluded middle is equivalent to decidability of membership for two arbitrary sets. (Contributed by Jim Kingdon, 18-Jun-2022.)
(EXMID ↔ ∀𝑥𝑦DECID 𝑥𝑦)
 
18-Jun-2022exmid0el 4122 Excluded middle is equivalent to decidability of being an element of an arbitrary set. (Contributed by Jim Kingdon, 18-Jun-2022.)
(EXMID ↔ ∀𝑥DECID ∅ ∈ 𝑥)
 
18-Jun-2022exmid01 4116 Excluded middle is equivalent to saying any subset of {∅} is either or {∅}. (Contributed by BJ and Jim Kingdon, 18-Jun-2022.)
(EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
 
18-Jun-2022exmidexmid 4115 EXMID implies that an arbitrary proposition is decidable. That is, EXMID captures the usual meaning of excluded middle when stated in terms of propositions.

To get other propositional statements which are equivalent to excluded middle, combine this with notnotrdc 828, peircedc 899, or condc 838.

(Contributed by Jim Kingdon, 18-Jun-2022.)

(EXMIDDECID 𝜑)
 
18-Jun-2022df-exmid 4114 The expression EXMID will be used as a readable shorthand for any form of the law of the excluded middle; this is a useful shorthand largely because it hides statements of the form "for any proposition" in a system which can only quantify over sets, not propositions.

To see how this compares with other ways of expressing excluded middle, compare undifexmid 4112 with exmidundif 4124. The former may be more recognizable as excluded middle because it is in terms of propositions, and the proof may be easier to follow for much the same reason (it just has to show 𝜑 and ¬ 𝜑 in the the relevant parts of the proof). The latter, however, has the key advantage of being able to prove both directions of the biconditional. To state that excluded middle implies a proposition is hard to do gracefully without EXMID, because there is no way to write a hypothesis 𝜑 ∨ ¬ 𝜑 for an arbitrary proposition; instead the hypothesis would need to be the particular instance of excluded middle which that proof needs. Or to say it another way, EXMID implies DECID 𝜑 by exmidexmid 4115 but there is no good way to express the converse.

This definition and how we use it is easiest to understand (and most appropriate to assign the name "excluded middle" to) if we assume ax-sep 4041, in which case EXMID means that all propositions are decidable (see exmidexmid 4115 and notice that it relies on ax-sep 4041). If we instead work with ax-bdsep 13071, EXMID as defined here means that all bounded propositions are decidable.

(Contributed by Mario Carneiro and Jim Kingdon, 18-Jun-2022.)

(EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥))
 
17-Jun-2022undifdc 6805 Union of complementary parts into whole. This is a case where we can strengthen undifss 3438 from subset to equality. (Contributed by Jim Kingdon, 17-Jun-2022.)
((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) → 𝐴 = (𝐵 ∪ (𝐴𝐵)))
 
17-Jun-2022undifdcss 6804 Union of complementary parts into whole and decidability. (Contributed by Jim Kingdon, 17-Jun-2022.)
(𝐴 = (𝐵 ∪ (𝐴𝐵)) ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 DECID 𝑥𝐵))
 
17-Jun-2022dcdifsnid 6393 If we remove a single element from a set with decidable equality then put it back in, we end up with the original set. This strengthens difsnss 3661 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 17-Jun-2022.)
((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
 
16-Jun-2022undifexmid 4112 Union of complementary parts producing the whole and excluded middle. Although special cases such as undifss 3438 and undifdcss 6804 are provable, the full statement implies excluded middle as shown here. (Contributed by Jim Kingdon, 16-Jun-2022.)
(𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦)       (𝜑 ∨ ¬ 𝜑)
 
16-Jun-2022dfdif3 3181 Alternate definition of class difference. Definition of relative set complement in Section 2.3 of [Pierik], p. 10. (Contributed by BJ and Jim Kingdon, 16-Jun-2022.)
(𝐴𝐵) = {𝑥𝐴 ∣ ∀𝑦𝐵 𝑥𝑦}
 
15-Jun-2022inffiexmid 6793 If any given set is either finite or infinite, excluded middle follows. (Contributed by Jim Kingdon, 15-Jun-2022.)
(𝑥 ∈ Fin ∨ ω ≼ 𝑥)       (𝜑 ∨ ¬ 𝜑)
 
15-Jun-2022isinfinf 6784 An infinite set contains subsets of arbitrarily large finite cardinality. (Contributed by Jim Kingdon, 15-Jun-2022.)
(ω ≼ 𝐴 → ∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛))
 
5-Jun-2022dif1enen 6767 Subtracting one element from each of two equinumerous finite sets. (Contributed by Jim Kingdon, 5-Jun-2022.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐴𝐵)    &   (𝜑𝐶𝐴)    &   (𝜑𝐷𝐵)       (𝜑 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
 
3-Jun-2022ifbothdadc 3498 A formula 𝜃 containing a decidable conditional operator is true when both of its cases are true. (Contributed by Jim Kingdon, 3-Jun-2022.)
(𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓𝜃))    &   (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒𝜃))    &   ((𝜂𝜑) → 𝜓)    &   ((𝜂 ∧ ¬ 𝜑) → 𝜒)    &   (𝜂DECID 𝜑)       (𝜂𝜃)
 
31-May-2022fihashssdif 10557 The size of the difference of a finite set and a finite subset is the set's size minus the subset's. (Contributed by Jim Kingdon, 31-May-2022.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) − (♯‘𝐵)))
 
31-May-2022prfidisj 6808 A pair is finite if it consists of two unequal sets. For the case where 𝐴 = 𝐵, see snfig 6701. For the cases where one or both is a proper class, see prprc1 3626, prprc2 3627, or prprc 3628. (Contributed by Jim Kingdon, 31-May-2022.)
((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ∈ Fin)
 
31-May-2022ssdifsn 3646 Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021.) (Proof shortened by JJ, 31-May-2022.)
(𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵 ∧ ¬ 𝐶𝐴))
 
28-May-2022phivalfi 11877 Finiteness of an expression used to define the Euler ϕ function. (Contributed by Jim Kingon, 28-May-2022.)
(𝑁 ∈ ℕ → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin)
 
27-May-2022ssfidc 6816 A subset of a finite set is finite if membership in the subset is decidable. (Contributed by Jim Kingdon, 27-May-2022.)
((𝐴 ∈ Fin ∧ 𝐵𝐴 ∧ ∀𝑥𝐴 DECID 𝑥𝐵) → 𝐵 ∈ Fin)
 
27-May-2022ssfirab 6815 A subset of a finite set is finite if it is defined by a decidable property. (Contributed by Jim Kingdon, 27-May-2022.)
(𝜑𝐴 ∈ Fin)    &   (𝜑 → ∀𝑥𝐴 DECID 𝜓)       (𝜑 → {𝑥𝐴𝜓} ∈ Fin)
 
24-May-2022nn0sqrtelqelz 11873 If a nonnegative integer has a rational square root, that root must be an integer. (Contributed by Jim Kingdon, 24-May-2022.)
((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ)
 
15-May-2022oawordriexmid 6359 A weak ordering property of ordinal addition which implies excluded middle. The property is proposition 8.7 of [TakeutiZaring] p. 59. Compare with oawordi 6358. (Contributed by Jim Kingdon, 15-May-2022.)
((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐)))       (𝜑 ∨ ¬ 𝜑)
 
13-May-2022unennn 11899 The union of two disjoint countably infinite sets is countably infinite. (Contributed by Jim Kingdon, 13-May-2022.)
((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ ℕ)
 
12-May-2022evenennn 11895 There are as many even positive integers as there are positive integers. (Contributed by Jim Kingdon, 12-May-2022.)
{𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ
 
11-May-2022oddennn 11894 There are as many odd positive integers as there are positive integers. (Contributed by Jim Kingdon, 11-May-2022.)
{𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ
 
11-May-2022flapcl 10041 The floor (greatest integer) function yields an integer when applied to a real number apart from any integer. For example, an irrational number (see for example sqrt2irrap 11847) would satisfy this condition. (Contributed by Jim Kingdon, 11-May-2022.)
((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → (⌊‘𝐴) ∈ ℤ)
 
11-May-2022apbtwnz 10040 There is a unique greatest integer less than or equal to a real number which is apart from all integers. (Contributed by Jim Kingdon, 11-May-2022.)
((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
 
10-May-2022exbtwnz 10021 If a real number is between an integer and its successor, there is a unique greatest integer less than or equal to the real number. (Contributed by Jim Kingdon, 10-May-2022.)
(𝜑 → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))    &   (𝜑𝐴 ∈ ℝ)       (𝜑 → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
 
10-May-2022exbtwnzlemshrink 10019 Lemma for exbtwnzlemex 10020. Shrinking the range around 𝐴. (Contributed by Jim Kingdon, 10-May-2022.)
(𝜑𝐽 ∈ ℕ)    &   (𝜑𝐴 ∈ ℝ)    &   ((𝜑𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))       ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
 
10-May-2022exbtwnzlemstep 10018 Lemma for exbtwnzlemex 10020. Induction step. (Contributed by Jim Kingdon, 10-May-2022.)
(𝜑𝐾 ∈ ℕ)    &   (𝜑𝐴 ∈ ℝ)    &   ((𝜑𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))       ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐾)))
 
30-Apr-2022seq3p1 10228 Value of the sequence builder function at a successor. (Contributed by Jim Kingdon, 30-Apr-2022.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
 
29-Apr-2022frecuzrdgsuct 10190 Successor value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 29-Apr-2022.)
(𝜑𝐶 ∈ ℤ)    &   (𝜑𝐴𝑆)    &   (𝜑𝑆𝑇)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)    &   (𝜑𝑃 = ran 𝑅)       ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃𝐵)))
 
29-Apr-2022frecuzrdgsuctlem 10189 Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 10165 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 29-Apr-2022.)
(𝜑𝐶 ∈ ℤ)    &   (𝜑𝐴𝑆)    &   (𝜑𝑆𝑇)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝑃 = ran 𝑅)       ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃𝐵)))
 
28-Apr-2022iseqvalcbv 10223 Changing the bound variables in an expression which appears in some seq related proofs. (Contributed by Jim Kingdon, 28-Apr-2022.)
frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑎 ∈ (ℤ𝑀), 𝑏𝑇 ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩), ⟨𝑀, (𝐹𝑀)⟩)
 
28-Apr-2022frecuzrdg0t 10188 Initial value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 28-Apr-2022.)
(𝜑𝐶 ∈ ℤ)    &   (𝜑𝐴𝑆)    &   (𝜑𝑆𝑇)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)    &   (𝜑𝑃 = ran 𝑅)       (𝜑 → (𝑃𝐶) = 𝐴)
 
24-Apr-2022frecuzrdgfun 10186 The recursive definition generator on upper integers produces a a function. (Contributed by Jim Kingdon, 24-Apr-2022.)
(𝜑𝐶 ∈ ℤ)    &   (𝜑𝐴𝑆)    &   (𝜑𝑆𝑇)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)       (𝜑 → Fun ran 𝑅)
 
24-Apr-2022frecuzrdgfunlem 10185 The recursive definition generator on upper integers produces a a function. (Contributed by Jim Kingdon, 24-Apr-2022.)
(𝜑𝐶 ∈ ℤ)    &   (𝜑𝐴𝑆)    &   (𝜑𝑆𝑇)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)       (𝜑 → Fun ran 𝑅)
 
24-Apr-2022frecuzrdgdom 10184 The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
(𝜑𝐶 ∈ ℤ)    &   (𝜑𝐴𝑆)    &   (𝜑𝑆𝑇)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)       (𝜑 → dom ran 𝑅 = (ℤ𝐶))
 
24-Apr-2022frecuzrdgdomlem 10183 The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
(𝜑𝐶 ∈ ℤ)    &   (𝜑𝐴𝑆)    &   (𝜑𝑆𝑇)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)       (𝜑 → dom ran 𝑅 = (ℤ𝐶))
 
23-Apr-2022frecuzrdgg 10182 Lemma for other theorems involving the the recursive definition generator on upper integers. Evaluating 𝑅 at a natural number gives an ordered pair whose first element is the mapping of that natural number via 𝐺. (Contributed by Jim Kingdon, 23-Apr-2022.)
(𝜑𝐶 ∈ ℤ)    &   (𝜑𝐴𝑆)    &   (𝜑𝑆𝑇)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)    &   (𝜑𝑁 ∈ ω)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)       (𝜑 → (1st ‘(𝑅𝑁)) = (𝐺𝑁))
 
22-Apr-2022frecuzrdgtclt 10187 The recursive definition generator on upper integers is a function. (Contributed by Jim Kingdon, 22-Apr-2022.)
(𝜑𝐶 ∈ ℤ)    &   (𝜑𝐴𝑆)    &   (𝜑𝑆𝑇)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)    &   (𝜑𝑃 = ran 𝑅)       (𝜑𝑃:(ℤ𝐶)⟶𝑆)
 
22-Apr-2022frecuzrdgrclt 10181 The function 𝑅 (used in the definition of the recursive definition generator on upper integers) yields ordered pairs of integers and elements of 𝑆. Similar to frecuzrdgrcl 10176 except that 𝑆 and 𝑇 need not be the same. (Contributed by Jim Kingdon, 22-Apr-2022.)
(𝜑𝐶 ∈ ℤ)    &   (𝜑𝐴𝑆)    &   (𝜑𝑆𝑇)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)       (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
 
17-Apr-2022funinsn 5167 A function based on the singleton of an ordered pair. Unlike funsng 5164, this holds even if 𝐴 or 𝐵 is a proper class. (Contributed by Jim Kingdon, 17-Apr-2022.)
Fun ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))
 
14-Apr-2022ad4ant234 1196 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
((𝜑𝜓𝜒) → 𝜃)       ((((𝜏𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃)
 
14-Apr-2022ad4ant134 1195 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
((𝜑𝜓𝜒) → 𝜃)       ((((𝜑𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃)
 
14-Apr-2022ad4ant124 1194 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
((𝜑𝜓𝜒) → 𝜃)       ((((𝜑𝜓) ∧ 𝜏) ∧ 𝜒) → 𝜃)
 
14-Apr-2022ad4ant123 1193 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
((𝜑𝜓𝜒) → 𝜃)       ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜃)
 
14-Apr-2022ad5ant25 515 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
((𝜑𝜓) → 𝜒)       (((((𝜃𝜑) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒)
 
14-Apr-2022ad5ant24 514 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
((𝜑𝜓) → 𝜒)       (((((𝜃𝜑) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒)
 
14-Apr-2022ad5ant23 513 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
((𝜑𝜓) → 𝜒)       (((((𝜃𝜑) ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) → 𝜒)
 
14-Apr-2022ad5ant15 512 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
((𝜑𝜓) → 𝜒)       (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒)
 
14-Apr-2022ad5ant14 511 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
((𝜑𝜓) → 𝜒)       (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒)
 
14-Apr-2022ad5ant13 510 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
((𝜑𝜓) → 𝜒)       (((((𝜑𝜃) ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) → 𝜒)
 
14-Apr-2022ad4ant24 507 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
((𝜑𝜓) → 𝜒)       ((((𝜃𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒)
 
14-Apr-2022ad4ant23 506 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
((𝜑𝜓) → 𝜒)       ((((𝜃𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒)
 
14-Apr-2022ad4ant14 505 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
((𝜑𝜓) → 𝜒)       ((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜒)
 
14-Apr-2022ad4ant13 504 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
((𝜑𝜓) → 𝜒)       ((((𝜑𝜃) ∧ 𝜓) ∧ 𝜏) → 𝜒)
 
13-Apr-2022rdgon 6276 Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.) (Revised by Jim Kingdon, 13-Apr-2022.)
(𝜑𝐴 ∈ On)    &   (𝜑 → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)       ((𝜑𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ On)
 
1-Apr-2022frecuzrdgrcl 10176 The function 𝑅 (used in the definition of the recursive definition generator on upper integers) is a function defined for all natural numbers. (Contributed by Jim Kingdon, 1-Apr-2022.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝐴𝑆)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)       (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
 
31-Mar-2022frecsuc 6297 The successor value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 31-Mar-2022.)
((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
 
30-Mar-2022frecfcl 6295 Finite recursion yields a function on the natural numbers. (Contributed by Jim Kingdon, 30-Mar-2022.)
((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → frec(𝐹, 𝐴):ω⟶𝑆)
 
30-Mar-2022frecfcllem 6294 Lemma for frecfcl 6295. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 30-Mar-2022.)
𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))       ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → frec(𝐹, 𝐴):ω⟶𝑆)
 
29-Mar-2022frecsuclem 6296 Lemma for frecsuc 6297. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 29-Mar-2022.)
𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})       ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
 
28-Mar-2022frecuzrdgrrn 10174 The function 𝑅 (used in the definition of the recursive definition generator on upper integers) yields ordered pairs of integers and elements of 𝑆. (Contributed by Jim Kingdon, 28-Mar-2022.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝐴𝑆)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)       ((𝜑𝐷 ∈ ω) → (𝑅𝐷) ∈ ((ℤ𝐶) × 𝑆))
 
27-Mar-2022freccl 6293 Closure for finite recursion. (Contributed by Jim Kingdon, 27-Mar-2022.)
(𝜑𝐴𝑆)    &   ((𝜑𝑧𝑆) → (𝐹𝑧) ∈ 𝑆)    &   (𝜑𝐵 ∈ ω)       (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆)
 
27-Mar-2022freccllem 6292 Lemma for freccl 6293. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 27-Mar-2022.)
(𝜑𝐴𝑆)    &   ((𝜑𝑧𝑆) → (𝐹𝑧) ∈ 𝑆)    &   (𝜑𝐵 ∈ ω)    &   𝐺 = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))       (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆)
 
26-Mar-2022tfrcldm 6253 Recursion is defined on an ordinal if the characteristic function satisfies a closure hypothesis up to a suitable point. (Contributed by Jim Kingdon, 26-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝑌 𝑋)       (𝜑𝑌 ∈ dom 𝐹)
 
26-Mar-2022tfrcllemaccex 6251 We can define an acceptable function on any element of 𝑋.

As with many of the transfinite recursion theorems, we have hypotheses that state that 𝐹 is a function and that it is defined up to 𝑋. (Contributed by Jim Kingdon, 26-Mar-2022.)

𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)       ((𝜑𝐶𝑋) → ∃𝑔(𝑔:𝐶𝑆 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
 
26-Mar-2022tfrcllemex 6250 Lemma for tfrcl 6254. (Contributed by Jim Kingdon, 26-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑 → ∃𝑓(𝑓:𝐷𝑆 ∧ ∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢))))
 
25-Mar-2022tfrcl 6254 Closure for transfinite recursion. As with tfr1on 6240, the characteristic function must be defined up to a suitable point, not necessarily on all ordinals. (Contributed by Jim Kingdon, 25-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝑌 𝑋)       (𝜑 → (𝐹𝑌) ∈ 𝑆)
 
25-Mar-2022tfrcllemubacc 6249 Lemma for tfrcl 6254. The union of 𝐵 satisfies the recursion rule. (Contributed by Jim Kingdon, 25-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑 → ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)))
 
25-Mar-2022tfrcllembex 6248 Lemma for tfrcl 6254. The set 𝐵 exists. (Contributed by Jim Kingdon, 25-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑𝐵 ∈ V)
 
25-Mar-2022tfrcllembfn 6247 Lemma for tfrcl 6254. The union of 𝐵 is a function defined on 𝑥. (Contributed by Jim Kingdon, 25-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑 𝐵:𝐷𝑆)
 
25-Mar-2022tfrcllembxssdm 6246 Lemma for tfrcl 6254. The union of 𝐵 is defined on all elements of 𝑋. (Contributed by Jim Kingdon, 25-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑𝐷 ⊆ dom 𝐵)
 
25-Mar-2022tfrcllembacc 6245 Lemma for tfrcl 6254. Each element of 𝐵 is an acceptable function. (Contributed by Jim Kingdon, 25-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔:𝑧𝑆𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔:𝑧𝑆 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑𝐵𝐴)
 
25-Mar-2022tfrcllemssrecs 6242 Lemma for tfrcl 6254. The union of functions acceptable for tfrcl 6254 is a subset of recs. (Contributed by Jim Kingdon, 25-Mar-2022.)
𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   (𝜑 → Ord 𝑋)       (𝜑 𝐴 ⊆ recs(𝐺))
 
24-Mar-2022tfrcllemsucaccv 6244 Lemma for tfrcl 6254. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 24-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   (𝜑𝑌𝑋)    &   (𝜑𝑧𝑌)    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝑔:𝑧𝑆)    &   (𝜑𝑔𝐴)       (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
 
24-Mar-2022tfrcllemsucfn 6243 We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6254. (Contributed by Jim Kingdon, 24-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   (𝜑𝑧𝑋)    &   (𝜑𝑔:𝑧𝑆)    &   (𝜑𝑔𝐴)       (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆)
 
21-Mar-2022frecabcl 6289 The class abstraction from df-frec 6281 exists. Unlike frecabex 6288 the function 𝐹 only needs to be defined on 𝑆, not all sets. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 21-Mar-2022.)
(𝜑𝑁 ∈ ω)    &   (𝜑𝐺:𝑁𝑆)    &   (𝜑 → ∀𝑦𝑆 (𝐹𝑦) ∈ 𝑆)    &   (𝜑𝐴𝑆)       (𝜑 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝐺 = suc 𝑚𝑥 ∈ (𝐹‘(𝐺𝑚))) ∨ (dom 𝐺 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆)
 
20-Mar-2022tfri1dALT 6241 Alternate proof of tfri1d 6225 in terms of tfr1on 6240.

Although this does show that the tfr1on 6240 proof is general enough to also prove tfri1d 6225, the tfri1d 6225 proof is simpler in places because it does not need to deal with 𝑋 being any ordinal. For that reason, we have both proofs. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by Jim Kingdon, 20-Mar-2022.)

𝐹 = recs(𝐺)    &   (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V))       (𝜑𝐹 Fn On)
 
18-Mar-2022tfrcllemres 6252 Lemma for tfr1on 6240. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝑌𝑋)       (𝜑𝑌 ⊆ dom 𝐹)
 
18-Mar-2022tfr1onlemres 6239 Lemma for tfr1on 6240. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝑌𝑋)       (𝜑𝑌 ⊆ dom 𝐹)
 
16-Mar-2022tfr1onlemaccex 6238 We can define an acceptable function on any element of 𝑋.

As with many of the transfinite recursion theorems, we have hypotheses that state that 𝐹 is a function and that it is defined up to 𝑋. (Contributed by Jim Kingdon, 16-Mar-2022.)

𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)       ((𝜑𝐶𝑋) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢𝐶 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
 
16-Mar-2022tfr1onlemex 6237 Lemma for tfr1on 6240. (Contributed by Jim Kingdon, 16-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑 → ∃𝑓(𝑓 Fn 𝐷 ∧ ∀𝑢𝐷 (𝑓𝑢) = (𝐺‘(𝑓𝑢))))
 
15-Mar-2022tfr1onlemubacc 6236 Lemma for tfr1on 6240. The union of 𝐵 satisfies the recursion rule. (Contributed by Jim Kingdon, 15-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑 → ∀𝑢𝐷 ( 𝐵𝑢) = (𝐺‘( 𝐵𝑢)))
 
15-Mar-2022tfr1onlembfn 6234 Lemma for tfr1on 6240. The union of 𝐵 is a function defined on 𝑥. (Contributed by Jim Kingdon, 15-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑 𝐵 Fn 𝐷)
 
15-Mar-2022tfr1onlemssrecs 6229 Lemma for tfr1on 6240. The union of functions acceptable for tfr1on 6240 is a subset of recs. (Contributed by Jim Kingdon, 15-Mar-2022.)
𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   (𝜑 → Ord 𝑋)       (𝜑 𝐴 ⊆ recs(𝐺))
 
14-Mar-2022tfr1onlembex 6235 Lemma for tfr1on 6240. The set 𝐵 exists. (Contributed by Jim Kingdon, 14-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑𝐵 ∈ V)
 
14-Mar-2022tfr1onlembxssdm 6233 Lemma for tfr1on 6240. The union of 𝐵 is defined on all elements of 𝑋. (Contributed by Jim Kingdon, 14-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑𝐷 ⊆ dom 𝐵)
 
14-Mar-2022tfr1onlembacc 6232 Lemma for tfr1on 6240. Each element of 𝐵 is an acceptable function. (Contributed by Jim Kingdon, 14-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝐷𝑋)    &   (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))       (𝜑𝐵𝐴)
 
14-Mar-2022tfr1onlem3 6228 Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3 6201 but for tfr1on 6240 related lemmas). (Contributed by Jim Kingdon, 14-Mar-2022.)
𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}       𝐴 = {𝑔 ∣ ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))}
 
13-Mar-2022nnsucuniel 6384 Given an element 𝐴 of the union of a natural number 𝐵, suc 𝐴 is an element of 𝐵 itself. The reverse direction holds for all ordinals (sucunielr 4421). The forward direction for all ordinals implies excluded middle (ordsucunielexmid 4441). (Contributed by Jim Kingdon, 13-Mar-2022.)
(𝐵 ∈ ω → (𝐴 𝐵 ↔ suc 𝐴𝐵))
 
13-Mar-2022tfr1onlem3ag 6227 Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3ag 6199 but for tfr1on 6240 related lemmas). (Contributed by Jim Kingdon, 13-Mar-2022.)
𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}       (𝐻𝑉 → (𝐻𝐴 ↔ ∃𝑧𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐻𝑤) = (𝐺‘(𝐻𝑤)))))
 
12-Mar-2022tfr1on 6240 Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 12-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝑌𝑋)       (𝜑𝑌 ⊆ dom 𝐹)
 
12-Mar-2022tfr1onlemsucaccv 6231 Lemma for tfr1on 6240. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 12-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   (𝜑𝑌𝑋)    &   (𝜑𝑧𝑌)    &   ((𝜑𝑥 𝑋) → suc 𝑥𝑋)    &   (𝜑𝑔 Fn 𝑧)    &   (𝜑𝑔𝐴)       (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
 
12-Mar-2022tfr1onlemsucfn 6230 We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6240. (Contributed by Jim Kingdon, 12-Mar-2022.)
𝐹 = recs(𝐺)    &   (𝜑 → Fun 𝐺)    &   (𝜑 → Ord 𝑋)    &   ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)    &   𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}    &   (𝜑𝑧𝑋)    &   (𝜑𝑔 Fn 𝑧)    &   (𝜑𝑔𝐴)       (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) Fn suc 𝑧)
 
8-Mar-2022tfr0dm 6212 Transfinite recursion is defined at the empty set. (Contributed by Jim Kingdon, 8-Mar-2022.)
𝐹 = recs(𝐺)       ((𝐺‘∅) ∈ 𝑉 → ∅ ∈ dom 𝐹)
 
5-Mar-2022unfiexmid 6799 If the union of any two finite sets is finite, excluded middle follows. Remark 8.1.17 of [AczelRathjen], p. 74. (Contributed by Mario Carneiro and Jim Kingdon, 5-Mar-2022.)
((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥𝑦) ∈ Fin)       (𝜑 ∨ ¬ 𝜑)
 
2-Mar-2022unfiin 6807 The union of two finite sets is finite if their intersection is. (Contributed by Jim Kingdon, 2-Mar-2022.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) ∈ Fin)
 
2-Mar-2022undiffi 6806 Union of complementary parts into whole. This is a case where we can strengthen undifss 3438 from subset to equality. (Contributed by Jim Kingdon, 2-Mar-2022.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → 𝐴 = (𝐵 ∪ (𝐴𝐵)))
 
1-Mar-20221domsn 6706 A singleton (whether of a set or a proper class) is dominated by one. (Contributed by Jim Kingdon, 1-Mar-2022.)
{𝐴} ≼ 1o
 
25-Feb-2022hashunlem 10543 Lemma for hashun 10544. Ordinal size of the union. (Contributed by Jim Kingdon, 25-Feb-2022.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑 → (𝐴𝐵) = ∅)    &   (𝜑𝑁 ∈ ω)    &   (𝜑𝑀 ∈ ω)    &   (𝜑𝐴𝑁)    &   (𝜑𝐵𝑀)       (𝜑 → (𝐴𝐵) ≈ (𝑁 +o 𝑀))
 
25-Feb-2022unfidisj 6803 The union of two disjoint finite sets is finite. (Contributed by Jim Kingdon, 25-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ Fin)
 
24-Feb-2022fihashdom 10542 Dominance relation for the size function. (Contributed by Jim Kingdon, 24-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
 
24-Feb-2022omgadd 10541 Mapping ordinal addition to integer addition. (Contributed by Jim Kingdon, 24-Feb-2022.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)       ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵)))
 
24-Feb-2022frec2uzled 10195 The mapping 𝐺 (see frec2uz0d 10165) preserves order. (Contributed by Jim Kingdon, 24-Feb-2022.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝐴 ∈ ω)    &   (𝜑𝐵 ∈ ω)       (𝜑 → (𝐴𝐵 ↔ (𝐺𝐴) ≤ (𝐺𝐵)))
 
22-Feb-2022isfinite4im 10532 A finite set is equinumerous to the range of integers from one up to the hash value of the set. (Contributed by Jim Kingdon, 22-Feb-2022.)
(𝐴 ∈ Fin → (1...(♯‘𝐴)) ≈ 𝐴)
 
21-Feb-2022filtinf 10531 The size of an infinite set is greater than the size of a finite set. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝐴 ∈ Fin ∧ ω ≼ 𝐵) → (♯‘𝐴) < (♯‘𝐵))
 
21-Feb-2022fihasheqf1od 10529 The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐹:𝐴1-1-onto𝐵)       (𝜑 → (♯‘𝐴) = (♯‘𝐵))
 
21-Feb-2022fihashf1rn 10528 The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → (♯‘𝐹) = (♯‘ran 𝐹))
 
21-Feb-2022fihasheqf1oi 10527 The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → (♯‘𝐴) = (♯‘𝐵))
 
21-Feb-2022hashfiv01gt1 10521 The size of a finite set is either 0 or 1 or greater than 1. (Contributed by Jim Kingdon, 21-Feb-2022.)
(𝑀 ∈ Fin → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
 
21-Feb-2022hashennn 10519 The size of a set equinumerous to an element of ω. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝑁 ∈ ω ∧ 𝑁𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
 
21-Feb-2022f1ofi 6824 If a 1-1 and onto function has a finite domain, its range is finite. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐵 ∈ Fin)
 
20-Feb-2022hashennnuni 10518 The ordinal size of a set equinumerous to an element of ω is that element of ω. (Contributed by Jim Kingdon, 20-Feb-2022.)
((𝑁 ∈ ω ∧ 𝑁𝐴) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = 𝑁)
 
20-Feb-2022hashinfom 10517 The value of the function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.)
(ω ≼ 𝐴 → (♯‘𝐴) = +∞)
 
20-Feb-2022hashinfuni 10516 The ordinal size of an infinite set is ω. (Contributed by Jim Kingdon, 20-Feb-2022.)
(ω ≼ 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = ω)
 
20-Feb-2022infnfi 6782 An infinite set is not finite. (Contributed by Jim Kingdon, 20-Feb-2022.)
(ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin)
 
19-Feb-2022sumdc2 12995 Alternate proof of sumdc 11120, without disjoint variable condition on 𝑁, 𝑥 (longer because the statement is taylored to the proof sumdc 11120). (Contributed by BJ, 19-Feb-2022.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   (𝜑 → ∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴)    &   (𝜑𝑁 ∈ ℤ)       (𝜑DECID 𝑁𝐴)
 
19-Feb-2022uzdcinzz 12994 An upperset of integers is decidable in the integers. Reformulation of eluzdc 9397. (Contributed by Jim Kingdon, 18-Apr-2020.) (Revised by BJ, 19-Feb-2022.)
(𝑀 ∈ ℤ → (ℤ𝑀) DECIDin ℤ)
 
19-Feb-2022decidin 12993 If A is a decidable subclass of B (meaning: it is a subclass of B and it is decidable in B), and B is decidable in C, then A is decidable in C. (Contributed by BJ, 19-Feb-2022.)
(𝜑𝐴𝐵)    &   (𝜑𝐴 DECIDin 𝐵)    &   (𝜑𝐵 DECIDin 𝐶)       (𝜑𝐴 DECIDin 𝐶)
 
19-Feb-2022decidr 12992 Sufficient condition for being decidable in another class. (Contributed by BJ, 19-Feb-2022.)
(𝜑 → (𝑥𝐵 → (𝑥𝐴 ∨ ¬ 𝑥𝐴)))       (𝜑𝐴 DECIDin 𝐵)
 
19-Feb-2022decidi 12991 Property of being decidable in another class. (Contributed by BJ, 19-Feb-2022.)
(𝐴 DECIDin 𝐵 → (𝑋𝐵 → (𝑋𝐴 ∨ ¬ 𝑋𝐴)))
 
19-Feb-2022df-dcin 12990 Define decidability of a class in another. (Contributed by BJ, 19-Feb-2022.)
(𝐴 DECIDin 𝐵 ↔ ∀𝑥𝐵 DECID 𝑥𝐴)
 
19-Feb-2022df-ihash 10515 Define the set size function , which gives the cardinality of a finite set as a member of 0, and assigns all infinite sets the value +∞. For example, (♯‘{0, 1, 2}) = 3.

Note that we use the sharp sign () for this function and we use the different character octothorpe (#) for the apartness relation (see df-ap 8337). We adopt the former notation from Corollary 8.2.4 of [AczelRathjen], p. 80 (although that work only defines it for finite sets).

This definition (in terms of and ) is not taken directly from the literature, but for finite sets should be equivalent to the conventional definition that the size of a finite set is the unique natural number which is equinumerous to the given set. (Contributed by Jim Kingdon, 19-Feb-2022.)

♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
 
18-Feb-2022infm 6791 An infinite set is inhabited. (Contributed by Jim Kingdon, 18-Feb-2022.)
(ω ≼ 𝐴 → ∃𝑥 𝑥𝐴)
 
13-Feb-2022frecfun 6285 Finite recursion produces a function. See also frecfnom 6291 which also states that the domain of that function is ω but which puts conditions on 𝐴 and 𝐹. (Contributed by Jim Kingdon, 13-Feb-2022.)
Fun frec(𝐹, 𝐴)
 
12-Feb-2022relsnopg 4638 A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by BJ, 12-Feb-2022.)
((𝐴𝑉𝐵𝑊) → Rel {⟨𝐴, 𝐵⟩})
 
12-Feb-2022relsng 4637 A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.) (Revised by BJ, 12-Feb-2022.)
(𝐴𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V)))
 
10-Feb-2022ltmininf 10999 Two ways of saying a number is less than the minimum of two others. (Contributed by Jim Kingdon, 10-Feb-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < inf({𝐵, 𝐶}, ℝ, < ) ↔ (𝐴 < 𝐵𝐴 < 𝐶)))
 
10-Feb-2022maxltsup 10983 Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 10-Feb-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
 
9-Feb-2022xrmaxleastlt 11018 The maximum as a least upper bound, in terms of less than. (Contributed by Jim Kingdon, 9-Feb-2022.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐶 < sup({𝐴, 𝐵}, ℝ*, < ))) → (𝐶 < 𝐴𝐶 < 𝐵))
 
9-Feb-2022maxleastlt 10980 The maximum as a least upper bound, in terms of less than. (Contributed by Jim Kingdon, 9-Feb-2022.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 < sup({𝐴, 𝐵}, ℝ, < ))) → (𝐶 < 𝐴𝐶 < 𝐵))
 
6-Feb-2022unsnfidcel 6802 The ¬ 𝐵𝐴 condition in unsnfi 6800. This is intended to show that unsnfi 6800 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵𝐴)
 
6-Feb-2022unsnfidcex 6801 The 𝐵𝑉 condition in unsnfi 6800. This is intended to show that unsnfi 6800 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵 ∈ V)
 
5-Feb-2022funrnfi 6823 The range of a finite relation is finite if its converse is a function. (Contributed by Jim Kingdon, 5-Feb-2022.)
((Rel 𝐴 ∧ Fun 𝐴𝐴 ∈ Fin) → ran 𝐴 ∈ Fin)
 
5-Feb-2022relcnvfi 6822 If a relation is finite, its converse is as well. (Contributed by Jim Kingdon, 5-Feb-2022.)
((Rel 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
 
5-Feb-2022fundmfi 6819 The domain of a finite function is finite. (Contributed by Jim Kingdon, 5-Feb-2022.)
((𝐴 ∈ Fin ∧ Fun 𝐴) → dom 𝐴 ∈ Fin)
 
5-Feb-2022infiexmid 6764 If the intersection of any finite set and any other set is finite, excluded middle follows. (Contributed by Jim Kingdon, 5-Feb-2022.)
(𝑥 ∈ Fin → (𝑥𝑦) ∈ Fin)       (𝜑 ∨ ¬ 𝜑)
 
3-Feb-2022unsnfi 6800 Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin)
 
3-Feb-2022domfiexmid 6765 If any set dominated by a finite set is finite, excluded middle follows. (Contributed by Jim Kingdon, 3-Feb-2022.)
((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)       (𝜑 ∨ ¬ 𝜑)
 
3-Feb-2022ssfilem 6762 Lemma for ssfiexmid 6763. (Contributed by Jim Kingdon, 3-Feb-2022.)
{𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin       (𝜑 ∨ ¬ 𝜑)
 
1-Feb-2022maxclpr 10987 The maximum of two real numbers is one of those numbers if and only if dichotomy (𝐴𝐵𝐵𝐴) holds. For example, this can be combined with zletric 9091 if one is dealing with integers, but real number dichotomy in general does not follow from our axioms. (Contributed by Jim Kingdon, 1-Feb-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (𝐴𝐵𝐵𝐴)))
 
31-Jan-2022znege1 11845 The absolute value of the difference between two unequal integers is at least one. (Contributed by Jim Kingdon, 31-Jan-2022.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵) → 1 ≤ (abs‘(𝐴𝐵)))
 
31-Jan-2022maxleastb 10979 Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Jim Kingdon, 31-Jan-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
 
30-Jan-2022max0addsup 10984 The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Jim Kingdon, 30-Jan-2022.)
(𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) + sup({-𝐴, 0}, ℝ, < )) = (abs‘𝐴))
 
29-Jan-2022expcanlem 10455 Lemma for expcan 10456. Proving the order in one direction. (Contributed by Jim Kingdon, 29-Jan-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑 → 1 < 𝐴)       (𝜑 → ((𝐴𝑀) ≤ (𝐴𝑁) → 𝑀𝑁))
 
28-Jan-2022exfzdc 10010 Decidability of the existence of an integer defined by a decidable proposition. (Contributed by Jim Kingdon, 28-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑛 ∈ (𝑀...𝑁)) → DECID 𝜓)       (𝜑DECID𝑛 ∈ (𝑀...𝑁)𝜓)
 
25-Jan-20221nen2 6748 One and two are not equinumerous. (Contributed by Jim Kingdon, 25-Jan-2022.)
¬ 1o ≈ 2o
 
24-Jan-2022divmulasscomap 8449 An associative/commutative law for division and multiplication. (Contributed by Jim Kingdon, 24-Jan-2022.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐴 · (𝐵 / 𝐷)) · 𝐶) = (𝐵 · ((𝐴 · 𝐶) / 𝐷)))
 
24-Jan-2022divmulassap 8448 An associative law for division and multiplication. (Contributed by Jim Kingdon, 24-Jan-2022.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐴 · (𝐵 / 𝐷)) · 𝐶) = ((𝐴 · 𝐵) · (𝐶 / 𝐷)))
 
21-Jan-2022lcmmndc 11732 Decidablity lemma used in various proofs related to lcm. (Contributed by Jim Kingdon, 21-Jan-2022.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∨ 𝑁 = 0))
 
20-Jan-2022infssuzcldc 11633 The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}    &   (𝜑𝐴𝑆)    &   ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)       (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆)
 
19-Jan-2022suprnubex 8704 An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by Jim Kingdon, 19-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 ¬ 𝐵 < 𝑧))
 
19-Jan-2022suprlubex 8703 The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by Jim Kingdon, 19-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐵 < 𝑧))
 
18-Jan-2022suprubex 8702 A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by Jim Kingdon, 18-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐵𝐴)       (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
 
17-Jan-2022zdvdsdc 11503 Divisibility of integers is decidable. (Contributed by Jim Kingdon, 17-Jan-2022.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
 
17-Jan-2022suplub2ti 6881 Bidirectional form of suplubti 6880. (Contributed by Jim Kingdon, 17-Jan-2022.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))    &   (𝜑𝑅 Or 𝐴)    &   (𝜑𝐵𝐴)       ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ ∃𝑧𝐵 𝐶𝑅𝑧))
 
16-Jan-2022zssinfcl 11630 The infimum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 16-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))    &   (𝜑𝐵 ⊆ ℤ)    &   (𝜑 → inf(𝐵, ℝ, < ) ∈ ℤ)       (𝜑 → inf(𝐵, ℝ, < ) ∈ 𝐵)
 
16-Jan-2022supelti 6882 Supremum membership in a set. (Contributed by Jim Kingdon, 16-Jan-2022.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐶 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))    &   (𝜑𝐶𝐴)       (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐶)
 
15-Jan-2022infsupneg 9384 If a set of real numbers has a greatest lower bound, the set of the negation of those numbers has a least upper bound. To go in the other direction see supinfneg 9383. (Contributed by Jim Kingdon, 15-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))    &   (𝜑𝐴 ⊆ ℝ)       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
 
15-Jan-2022supinfneg 9383 If a set of real numbers has a least upper bound, the set of the negation of those numbers has a greatest lower bound. For a theorem which is similar but only for the boundedness part, see ublbneg 9398. (Contributed by Jim Kingdon, 15-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℝ)       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑧 < 𝑦)))
 
14-Jan-2022supminfex 9385 A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℝ)       (𝜑 → sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ))
 
14-Jan-2022infrenegsupex 9382 The infimum of a set of reals 𝐴 is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 14-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))    &   (𝜑𝐴 ⊆ ℝ)       (𝜑 → inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
 
13-Jan-2022infssuzledc 11632 The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by Jim Kingdon, 13-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}    &   (𝜑𝐴𝑆)    &   ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)       (𝜑 → inf(𝑆, ℝ, < ) ≤ 𝐴)
 
13-Jan-2022infssuzex 11631 Existence of the infimum of a subset of an upper set of integers. (Contributed by Jim Kingdon, 13-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}    &   (𝜑𝐴𝑆)    &   ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
 
11-Jan-2022ifcldadc 3496 Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.)
((𝜑𝜓) → 𝐴𝐶)    &   ((𝜑 ∧ ¬ 𝜓) → 𝐵𝐶)    &   (𝜑DECID 𝜓)       (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶)
 
9-Jan-2022bezoutlemsup 11686 Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the supremum of divisors of both 𝐴 and 𝐵. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑𝐷 ∈ ℕ0)    &   (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))    &   (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))       (𝜑𝐷 = sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ))
 
9-Jan-2022bezoutlemle 11685 Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the largest number which divides both 𝐴 and 𝐵. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑𝐷 ∈ ℕ0)    &   (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))    &   (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))       (𝜑 → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
 
9-Jan-2022bezoutlemeu 11684 Lemma for Bézout's identity. There is exactly one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑𝐷 ∈ ℕ0)    &   (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))       (𝜑 → ∃!𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))
 
9-Jan-2022bezoutlemmo 11683 Lemma for Bézout's identity. There is at most one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑𝐷 ∈ ℕ0)    &   (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))    &   (𝜑𝐸 ∈ ℕ0)    &   (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐸 ↔ (𝑧𝐴𝑧𝐵)))       (𝜑𝐷 = 𝐸)
 
9-Jan-2022hash2iun1dif1 11242 The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.)
(𝜑𝐴 ∈ Fin)    &   𝐵 = (𝐴 ∖ {𝑥})    &   ((𝜑𝑥𝐴𝑦𝐵) → 𝐶 ∈ Fin)    &   (𝜑Disj 𝑥𝐴 𝑦𝐵 𝐶)    &   ((𝜑𝑥𝐴) → Disj 𝑦𝐵 𝐶)    &   ((𝜑𝑥𝐴𝑦𝐵) → (♯‘𝐶) = 1)       (𝜑 → (♯‘ 𝑥𝐴 𝑦𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
 
9-Jan-2022hash2iun 11241 The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)    &   ((𝜑𝑥𝐴𝑦𝐵) → 𝐶 ∈ Fin)    &   (𝜑Disj 𝑥𝐴 𝑦𝐵 𝐶)    &   ((𝜑𝑥𝐴) → Disj 𝑦𝐵 𝐶)       (𝜑 → (♯‘ 𝑥𝐴 𝑦𝐵 𝐶) = Σ𝑥𝐴 Σ𝑦𝐵 (♯‘𝐶))
 
8-Jan-2022bezoutlembi 11682 Lemma for Bézout's identity. Like bezoutlembz 11681 but the greatest common divisor condition is a biconditional, not just an implication. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
 
8-Jan-2022bezoutlembz 11681 Lemma for Bézout's identity. Like bezoutlemaz 11680 but where ' B ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
 
8-Jan-2022bezoutlemaz 11680 Lemma for Bézout's identity. Like bezoutlemzz 11679 but where ' A ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
 
8-Jan-2022bezoutlemzz 11679 Lemma for Bézout's identity. Like bezoutlemex 11678 but where ' z ' is any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
 
7-Jan-2022fsumdifsnconst 11217 The sum of constant terms (𝑘 is not free in 𝐶) over an index set excluding a singleton. (Contributed by AV, 7-Jan-2022.)
((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶 ∈ ℂ) → Σ𝑘 ∈ (𝐴 ∖ {𝐵})𝐶 = (((♯‘𝐴) − 1) · 𝐶))
 
6-Jan-2022bezoutlemnewy 11673 Lemma for Bézout's identity. The is-bezout predicate holds for (𝑦 mod 𝑊). (Contributed by Jim Kingdon, 6-Jan-2022.)
(𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))    &   (𝜃𝐴 ∈ ℕ0)    &   (𝜃𝐵 ∈ ℕ0)    &   (𝜃𝑊 ∈ ℕ)    &   (𝜃 → [𝑦 / 𝑟]𝜑)    &   (𝜃𝑦 ∈ ℕ0)    &   (𝜃[𝑊 / 𝑟]𝜑)       (𝜃[(𝑦 mod 𝑊) / 𝑟]𝜑)
 
6-Jan-2022apsub1 8397 Subtraction respects apartness. Analogue of subcan2 7980 for apartness. (Contributed by Jim Kingdon, 6-Jan-2022.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴𝐶) # (𝐵𝐶)))
 
5-Jan-2022eirraplem 11472 Lemma for eirrap 11473. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 5-Jan-2022.)
𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))    &   (𝜑𝑃 ∈ ℤ)    &   (𝜑𝑄 ∈ ℕ)       (𝜑 → e # (𝑃 / 𝑄))
 
3-Jan-2022bezoutlemex 11678 Lemma for Bézout's identity. Existence of a number which we will later show to be the greater common divisor and its decomposition into cofactors. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jan-2022.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
 
3-Jan-2022bezoutlemstep 11674 Lemma for Bézout's identity. This is the induction step for the proof by induction. (Contributed by Jim Kingdon, 3-Jan-2022.)
(𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))    &   (𝜃𝐴 ∈ ℕ0)    &   (𝜃𝐵 ∈ ℕ0)    &   (𝜃𝑊 ∈ ℕ)    &   (𝜃 → [𝑦 / 𝑟]𝜑)    &   (𝜃𝑦 ∈ ℕ0)    &   (𝜃[𝑊 / 𝑟]𝜑)    &   (𝜓 ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑦)))    &   ((𝜃[(𝑦 mod 𝑊) / 𝑟]𝜑) → ∃𝑟 ∈ ℕ0 ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑))    &   𝑥𝜃    &   𝑟𝜃       (𝜃 → ∃𝑟 ∈ ℕ0 ([𝑊 / 𝑥]𝜓𝜑))
 
2-Jan-2022ssrind 3298 Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴𝐵)       (𝜑 → (𝐴𝐶) ⊆ (𝐵𝐶))
 
2-Jan-2022rexlimdva2 2550 Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)       (𝜑 → (∃𝑥𝐴 𝜓𝜒))

  Copyright terms: Public domain W3C HTML validation [external]