HomeHome Intuitionistic Logic Explorer
Theorem List (p. 100 of 105)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9901-10000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremabs3lem 9901 Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) → (((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2)) → (abs‘(𝐴𝐵)) < 𝐷))
 
Theoremfzomaxdiflem 9902 Lemma for fzomaxdif 9903. (Contributed by Stefan O'Rear, 6-Sep-2015.)
(((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (abs‘(𝐵𝐴)) ∈ (0..^(𝐷𝐶)))
 
Theoremfzomaxdif 9903 A bound on the separation of two points in a half-open range. (Contributed by Stefan O'Rear, 6-Sep-2015.)
((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (abs‘(𝐴𝐵)) ∈ (0..^(𝐷𝐶)))
 
Theoremcau3lem 9904* Lemma for cau3 9905. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 1-May-2014.)
𝑍 ⊆ ℤ    &   (𝜏𝜓)    &   ((𝐹𝑘) = (𝐹𝑗) → (𝜓𝜒))    &   ((𝐹𝑘) = (𝐹𝑚) → (𝜓𝜃))    &   ((𝜑𝜒𝜓) → (𝐺‘((𝐹𝑗)𝐷(𝐹𝑘))) = (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))))    &   ((𝜑𝜃𝜒) → (𝐺‘((𝐹𝑚)𝐷(𝐹𝑗))) = (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))))    &   ((𝜑 ∧ (𝜓𝜃) ∧ (𝜒𝑥 ∈ ℝ)) → (((𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹𝑗)𝐷(𝐹𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥))       (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ (𝐺‘((𝐹𝑘)𝐷(𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ𝑘)(𝐺‘((𝐹𝑘)𝐷(𝐹𝑚))) < 𝑥)))
 
Theoremcau3 9905* Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of 𝑗 in the assertion, so it can be used with rexanuz 9779 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.)
𝑍 = (ℤ𝑀)       (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ𝑘)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
 
Theoremcau4 9906* Change the base of a Cauchy criterion. (Contributed by Mario Carneiro, 18-Mar-2014.)
𝑍 = (ℤ𝑀)    &   𝑊 = (ℤ𝑁)       (𝑁𝑍 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
 
Theoremcaubnd2 9907* A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.)
𝑍 = (ℤ𝑀)       (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
 
Theoremamgm2 9908 Arithmetic-geometric mean inequality for 𝑛 = 2. (Contributed by Mario Carneiro, 2-Jul-2014.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2))
 
Theoremsqrtthi 9909 Square root theorem. Theorem I.35 of [Apostol] p. 29. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
𝐴 ∈ ℝ       (0 ≤ 𝐴 → ((√‘𝐴) · (√‘𝐴)) = 𝐴)
 
Theoremsqrtcli 9910 The square root of a nonnegative real is a real. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
𝐴 ∈ ℝ       (0 ≤ 𝐴 → (√‘𝐴) ∈ ℝ)
 
Theoremsqrtgt0i 9911 The square root of a positive real is positive. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
𝐴 ∈ ℝ       (0 < 𝐴 → 0 < (√‘𝐴))
 
Theoremsqrtmsqi 9912 Square root of square. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℝ       (0 ≤ 𝐴 → (√‘(𝐴 · 𝐴)) = 𝐴)
 
Theoremsqrtsqi 9913 Square root of square. (Contributed by NM, 11-Aug-1999.)
𝐴 ∈ ℝ       (0 ≤ 𝐴 → (√‘(𝐴↑2)) = 𝐴)
 
Theoremsqsqrti 9914 Square of square root. (Contributed by NM, 11-Aug-1999.)
𝐴 ∈ ℝ       (0 ≤ 𝐴 → ((√‘𝐴)↑2) = 𝐴)
 
Theoremsqrtge0i 9915 The square root of a nonnegative real is nonnegative. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
𝐴 ∈ ℝ       (0 ≤ 𝐴 → 0 ≤ (√‘𝐴))
 
Theoremabsidi 9916 A nonnegative number is its own absolute value. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℝ       (0 ≤ 𝐴 → (abs‘𝐴) = 𝐴)
 
Theoremabsnidi 9917 A negative number is the negative of its own absolute value. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℝ       (𝐴 ≤ 0 → (abs‘𝐴) = -𝐴)
 
Theoremleabsi 9918 A real number is less than or equal to its absolute value. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℝ       𝐴 ≤ (abs‘𝐴)
 
Theoremabsrei 9919 Absolute value of a real number. (Contributed by NM, 3-Aug-1999.)
𝐴 ∈ ℝ       (abs‘𝐴) = (√‘(𝐴↑2))
 
Theoremsqrtpclii 9920 The square root of a positive real is a real. (Contributed by Mario Carneiro, 6-Sep-2013.)
𝐴 ∈ ℝ    &   0 < 𝐴       (√‘𝐴) ∈ ℝ
 
Theoremsqrtgt0ii 9921 The square root of a positive real is positive. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
𝐴 ∈ ℝ    &   0 < 𝐴       0 < (√‘𝐴)
 
Theoremsqrt11i 9922 The square root function is one-to-one. (Contributed by NM, 27-Jul-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((√‘𝐴) = (√‘𝐵) ↔ 𝐴 = 𝐵))
 
Theoremsqrtmuli 9923 Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵)))
 
Theoremsqrtmulii 9924 Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   0 ≤ 𝐴    &   0 ≤ 𝐵       (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))
 
Theoremsqrtmsq2i 9925 Relationship between square root and squares. (Contributed by NM, 31-Jul-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((√‘𝐴) = 𝐵𝐴 = (𝐵 · 𝐵)))
 
Theoremsqrtlei 9926 Square root is monotonic. (Contributed by NM, 3-Aug-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵)))
 
Theoremsqrtlti 9927 Square root is strictly monotonic. (Contributed by Roy F. Longton, 8-Aug-2005.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵)))
 
Theoremabslti 9928 Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴𝐴 < 𝐵))
 
Theoremabslei 9929 Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵))
 
Theoremabsvalsqi 9930 Square of value of absolute value function. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))
 
Theoremabsvalsq2i 9931 Square of value of absolute value function. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))
 
Theoremabscli 9932 Real closure of absolute value. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℂ       (abs‘𝐴) ∈ ℝ
 
Theoremabsge0i 9933 Absolute value is nonnegative. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℂ       0 ≤ (abs‘𝐴)
 
Theoremabsval2i 9934 Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
 
Theoremabs00i 9935 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ       ((abs‘𝐴) = 0 ↔ 𝐴 = 0)
 
Theoremabsgt0api 9936 The absolute value of a nonzero number is positive. Remark in [Apostol] p. 363. (Contributed by NM, 1-Oct-1999.)
𝐴 ∈ ℂ       (𝐴 # 0 ↔ 0 < (abs‘𝐴))
 
Theoremabsnegi 9937 Absolute value of negative. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℂ       (abs‘-𝐴) = (abs‘𝐴)
 
Theoremabscji 9938 The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (abs‘(∗‘𝐴)) = (abs‘𝐴)
 
Theoremreleabsi 9939 The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (ℜ‘𝐴) ≤ (abs‘𝐴)
 
Theoremabssubi 9940 Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by NM, 1-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴))
 
Theoremabsmuli 9941 Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by NM, 1-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵))
 
Theoremsqabsaddi 9942 Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))
 
Theoremsqabssubi 9943 Square of absolute value of difference. (Contributed by Steve Rodriguez, 20-Jan-2007.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       ((abs‘(𝐴𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))
 
Theoremabsdivapzi 9944 Absolute value distributes over division. (Contributed by Jim Kingdon, 13-Aug-2021.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐵 # 0 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))
 
Theoremabstrii 9945 Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. This is Metamath 100 proof #91. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))
 
Theoremabs3difi 9946 Absolute value of differences around common element. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵)))
 
Theoremabs3lemi 9947 Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℝ       (((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2)) → (abs‘(𝐴𝐵)) < 𝐷)
 
Theoremrpsqrtcld 9948 The square root of a positive real is positive. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (√‘𝐴) ∈ ℝ+)
 
Theoremsqrtgt0d 9949 The square root of a positive real is positive. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → 0 < (√‘𝐴))
 
Theoremabsnidd 9950 A negative number is the negative of its own absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 ≤ 0)       (𝜑 → (abs‘𝐴) = -𝐴)
 
Theoremleabsd 9951 A real number is less than or equal to its absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴 ≤ (abs‘𝐴))
 
Theoremabsred 9952 Absolute value of a real number. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (abs‘𝐴) = (√‘(𝐴↑2)))
 
Theoremresqrtcld 9953 The square root of a nonnegative real is a real. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (√‘𝐴) ∈ ℝ)
 
Theoremsqrtmsqd 9954 Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (√‘(𝐴 · 𝐴)) = 𝐴)
 
Theoremsqrtsqd 9955 Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (√‘(𝐴↑2)) = 𝐴)
 
Theoremsqrtge0d 9956 The square root of a nonnegative real is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → 0 ≤ (√‘𝐴))
 
Theoremabsidd 9957 A nonnegative number is its own absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (abs‘𝐴) = 𝐴)
 
Theoremsqrtdivd 9958 Square root distributes over division. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵)))
 
Theoremsqrtmuld 9959 Square root distributes over multiplication. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵)))
 
Theoremsqrtsq2d 9960 Relationship between square root and squares. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → ((√‘𝐴) = 𝐵𝐴 = (𝐵↑2)))
 
Theoremsqrtled 9961 Square root is monotonic. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → (𝐴𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵)))
 
Theoremsqrtltd 9962 Square root is strictly monotonic. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵)))
 
Theoremsqr11d 9963 The square root function is one-to-one. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)    &   (𝜑 → (√‘𝐴) = (√‘𝐵))       (𝜑𝐴 = 𝐵)
 
Theoremabsltd 9964 Absolute value and 'less than' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴𝐴 < 𝐵)))
 
Theoremabsled 9965 Absolute value and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵)))
 
Theoremabssubge0d 9966 Absolute value of a nonnegative difference. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (abs‘(𝐵𝐴)) = (𝐵𝐴))
 
Theoremabssuble0d 9967 Absolute value of a nonpositive difference. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (abs‘(𝐴𝐵)) = (𝐵𝐴))
 
Theoremabsdifltd 9968 The absolute value of a difference and 'less than' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((abs‘(𝐴𝐵)) < 𝐶 ↔ ((𝐵𝐶) < 𝐴𝐴 < (𝐵 + 𝐶))))
 
Theoremabsdifled 9969 The absolute value of a difference and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((abs‘(𝐴𝐵)) ≤ 𝐶 ↔ ((𝐵𝐶) ≤ 𝐴𝐴 ≤ (𝐵 + 𝐶))))
 
Theoremicodiamlt 9970 Two elements in a half-open interval have separation strictly less than the difference between the endpoints. (Contributed by Stefan O'Rear, 12-Sep-2014.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶𝐷)) < (𝐵𝐴))
 
Theoremabscld 9971 Real closure of absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (abs‘𝐴) ∈ ℝ)
 
Theoremabsvalsqd 9972 Square of value of absolute value function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
 
Theoremabsvalsq2d 9973 Square of value of absolute value function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
 
Theoremabsge0d 9974 Absolute value is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → 0 ≤ (abs‘𝐴))
 
Theoremabsval2d 9975 Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
 
Theoremabs00d 9976 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (abs‘𝐴) = 0)       (𝜑𝐴 = 0)
 
Theoremabsne0d 9977 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → (abs‘𝐴) ≠ 0)
 
Theoremabsrpclapd 9978 The absolute value of a complex number apart from zero is a positive real. (Contributed by Jim Kingdon, 13-Aug-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (abs‘𝐴) ∈ ℝ+)
 
Theoremabsnegd 9979 Absolute value of negative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (abs‘-𝐴) = (abs‘𝐴))
 
Theoremabscjd 9980 The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (abs‘(∗‘𝐴)) = (abs‘𝐴))
 
Theoremreleabsd 9981 The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℜ‘𝐴) ≤ (abs‘𝐴))
 
Theoremabsexpd 9982 Absolute value of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
 
Theoremabssubd 9983 Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
 
Theoremabsmuld 9984 Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
 
Theoremabsdivapd 9985 Absolute value distributes over division. (Contributed by Jim Kingdon, 13-Aug-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))
 
Theoremabstrid 9986 Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))
 
Theoremabs2difd 9987 Difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))
 
Theoremabs2dif2d 9988 Difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))
 
Theoremabs2difabsd 9989 Absolute value of difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)))
 
Theoremabs3difd 9990 Absolute value of differences around common element. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))))
 
Theoremabs3lemd 9991 Lemma involving absolute value of differences. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑 → (abs‘(𝐴𝐶)) < (𝐷 / 2))    &   (𝜑 → (abs‘(𝐶𝐵)) < (𝐷 / 2))       (𝜑 → (abs‘(𝐴𝐵)) < 𝐷)
 
Theoremqdenre 9992* The rational numbers are dense in : any real number can be approximated with arbitrary precision by a rational number. For order theoretic density, see qbtwnre 9183. (Contributed by BJ, 15-Oct-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℚ (abs‘(𝑥𝐴)) < 𝐵)
 
3.8  Elementary limits and convergence
 
3.8.1  Limits
 
Syntaxcli 9993 Extend class notation with convergence relation for limits.
class
 
Definitiondf-clim 9994* Define the limit relation for complex number sequences. See clim 9996 for its relational expression. (Contributed by NM, 28-Aug-2005.)
⇝ = {⟨𝑓, 𝑦⟩ ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥))}
 
Theoremclimrel 9995 The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Rel ⇝
 
Theoremclim 9996* Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. This means that for any real 𝑥, no matter how small, there always exists an integer 𝑗 such that the absolute difference of any later complex number in the sequence and the limit is less than 𝑥. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝜑𝐹𝑉)    &   ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = 𝐵)       (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
 
Theoremclimcl 9997 Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐹𝐴𝐴 ∈ ℂ)
 
Theoremclim2 9998* Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴, with more general quantifier restrictions than clim 9996. (Contributed by NM, 6-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)       (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
 
Theoremclim2c 9999* Express the predicate 𝐹 converges to 𝐴. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   (𝜑𝐴 ∈ ℂ)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)       (𝜑 → (𝐹𝐴 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵𝐴)) < 𝑥))
 
Theoremclim0 10000* Express the predicate 𝐹 converges to 0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)       (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘𝐵) < 𝑥)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10454
  Copyright terms: Public domain < Previous  Next >