![]() |
Intuitionistic Logic Explorer Theorem List (p. 108 of 111) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mulgcddvds 10701 | One half of rpmulgcd2 10702, which does not need the coprimality assumption. (Contributed by Mario Carneiro, 2-Jul-2015.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁))) | ||
Theorem | rpmulgcd2 10702 | If 𝑀 is relatively prime to 𝑁, then the GCD of 𝐾 with 𝑀 · 𝑁 is the product of the GCDs with 𝑀 and 𝑁 respectively. (Contributed by Mario Carneiro, 2-Jul-2015.) |
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁))) | ||
Theorem | qredeq 10703 | Two equal reduced fractions have the same numerator and denominator. (Contributed by Jeff Hankins, 29-Sep-2013.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) ∧ (𝑀 / 𝑁) = (𝑃 / 𝑄)) → (𝑀 = 𝑃 ∧ 𝑁 = 𝑄)) | ||
Theorem | qredeu 10704* | Every rational number has a unique reduced form. (Contributed by Jeff Hankins, 29-Sep-2013.) |
⊢ (𝐴 ∈ ℚ → ∃!𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))) | ||
Theorem | rpmul 10705 | If 𝐾 is relatively prime to 𝑀 and to 𝑁, it is also relatively prime to their product. (Contributed by Mario Carneiro, 24-Feb-2014.) (Proof shortened by Mario Carneiro, 2-Jul-2015.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 gcd 𝑀) = 1 ∧ (𝐾 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = 1)) | ||
Theorem | rpdvds 10706 | If 𝐾 is relatively prime to 𝑁 then it is also relatively prime to any divisor 𝑀 of 𝑁. (Contributed by Mario Carneiro, 19-Jun-2015.) |
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → (𝐾 gcd 𝑀) = 1) | ||
Theorem | congr 10707* | Definition of congruence by integer multiple (see ProofWiki "Congruence (Number Theory)", 11-Jul-2021, https://proofwiki.org/wiki/Definition:Congruence_(Number_Theory)): An integer 𝐴 is congruent to an integer 𝐵 modulo 𝑀 if their difference is a multiple of 𝑀. See also the definition in [ApostolNT] p. 104: "... 𝑎 is congruent to 𝑏 modulo 𝑚, and we write 𝑎≡𝑏 (mod 𝑚) if 𝑚 divides the difference 𝑎 − 𝑏", or Wikipedia "Modular arithmetic - Congruence", https://en.wikipedia.org/wiki/Modular_arithmetic#Congruence, 11-Jul-2021,: "Given an integer n > 1, called a modulus, two integers are said to be congruent modulo n, if n is a divisor of their difference (i.e., if there is an integer k such that a-b = kn)". (Contributed by AV, 11-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = (𝐴 − 𝐵))) | ||
Theorem | divgcdcoprm0 10708 | Integers divided by gcd are coprime. (Contributed by AV, 12-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1) | ||
Theorem | divgcdcoprmex 10709* | Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)) | ||
Theorem | cncongr1 10710 | One direction of the bicondition in cncongr 10712. Theorem 5.4 in [ApostolNT] p. 109. (Contributed by AV, 13-Jul-2021.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))) | ||
Theorem | cncongr2 10711 | The other direction of the bicondition in cncongr 10712. (Contributed by AV, 11-Jul-2021.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))) | ||
Theorem | cncongr 10712 | Cancellability of Congruences (see ProofWiki "Cancellability of Congruences, https://proofwiki.org/wiki/Cancellability_of_Congruences, 10-Jul-2021): Two products with a common factor are congruent modulo a positive integer iff the other factors are congruent modulo the integer divided by the greates common divisor of the integer and the common factor. See also Theorem 5.4 "Cancellation law" in [ApostolNT] p. 109. (Contributed by AV, 13-Jul-2021.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ (𝐴 mod 𝑀) = (𝐵 mod 𝑀))) | ||
Theorem | cncongrcoprm 10713 | Corollary 1 of Cancellability of Congruences: Two products with a common factor are congruent modulo an integer being coprime to the common factor iff the other factors are congruent modulo the integer. (Contributed by AV, 13-Jul-2021.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ (𝐶 gcd 𝑁) = 1)) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ (𝐴 mod 𝑁) = (𝐵 mod 𝑁))) | ||
Remark: to represent odd prime numbers, i.e., all prime numbers except 2, the idiom 𝑃 ∈ (ℙ ∖ {2}) is used. It is a little bit shorter than (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2). Both representations can be converted into each other by eldifsn 3535. | ||
Syntax | cprime 10714 | Extend the definition of a class to include the set of prime numbers. |
class ℙ | ||
Definition | df-prm 10715* | Define the set of prime numbers. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2𝑜} | ||
Theorem | isprm 10716* | The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2𝑜)) | ||
Theorem | prmnn 10717 | A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | ||
Theorem | prmz 10718 | A prime number is an integer. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Jonathan Yan, 16-Jul-2017.) |
⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | ||
Theorem | prmssnn 10719 | The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.) |
⊢ ℙ ⊆ ℕ | ||
Theorem | prmex 10720 | The set of prime numbers exists. (Contributed by AV, 22-Jul-2020.) |
⊢ ℙ ∈ V | ||
Theorem | 1nprm 10721 | 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.) |
⊢ ¬ 1 ∈ ℙ | ||
Theorem | 1idssfct 10722* | The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) | ||
Theorem | isprm2lem 10723* | Lemma for isprm2 10724. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2𝑜 ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃})) | ||
Theorem | isprm2 10724* | The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only positive divisors are 1 and itself. Definition in [ApostolNT] p. 16. (Contributed by Paul Chapman, 26-Oct-2012.) |
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) | ||
Theorem | isprm3 10725* | The predicate "is a prime number". A prime number is an integer greater than or equal to 2 with no divisors strictly between 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012.) |
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧 ∥ 𝑃)) | ||
Theorem | isprm4 10726* | The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only divisor greater than or equal to 2 is itself. (Contributed by Paul Chapman, 26-Oct-2012.) |
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) | ||
Theorem | prmind2 10727* | A variation on prmind 10728 assuming complete induction for primes. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 · 𝑧) → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) & ⊢ 𝜓 & ⊢ ((𝑥 ∈ ℙ ∧ ∀𝑦 ∈ (1...(𝑥 − 1))𝜒) → 𝜑) & ⊢ ((𝑦 ∈ (ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2)) → ((𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜂) | ||
Theorem | prmind 10728* | Perform induction over the multiplicative structure of ℕ. If a property 𝜑(𝑥) holds for the primes and 1 and is preserved under multiplication, then it holds for every positive integer. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 · 𝑧) → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) & ⊢ 𝜓 & ⊢ (𝑥 ∈ ℙ → 𝜑) & ⊢ ((𝑦 ∈ (ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2)) → ((𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜂) | ||
Theorem | dvdsprime 10729 | If 𝑀 divides a prime, then 𝑀 is either the prime or one. (Contributed by Scott Fenton, 8-Apr-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1))) | ||
Theorem | nprm 10730 | A product of two integers greater than one is composite. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → ¬ (𝐴 · 𝐵) ∈ ℙ) | ||
Theorem | nprmi 10731 | An inference for compositeness. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Jun-2015.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ & ⊢ 1 < 𝐴 & ⊢ 1 < 𝐵 & ⊢ (𝐴 · 𝐵) = 𝑁 ⇒ ⊢ ¬ 𝑁 ∈ ℙ | ||
Theorem | dvdsnprmd 10732 | If a number is divisible by an integer greater than 1 and less then the number, the number is not prime. (Contributed by AV, 24-Jul-2021.) |
⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 𝐴 < 𝑁) & ⊢ (𝜑 → 𝐴 ∥ 𝑁) ⇒ ⊢ (𝜑 → ¬ 𝑁 ∈ ℙ) | ||
Theorem | prm2orodd 10733 | A prime number is either 2 or odd. (Contributed by AV, 19-Jun-2021.) |
⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ ¬ 2 ∥ 𝑃)) | ||
Theorem | 2prm 10734 | 2 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
⊢ 2 ∈ ℙ | ||
Theorem | 3prm 10735 | 3 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ 3 ∈ ℙ | ||
Theorem | 4nprm 10736 | 4 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 18-Feb-2014.) |
⊢ ¬ 4 ∈ ℙ | ||
Theorem | prmuz2 10737 | A prime number is an integer greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.) |
⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) | ||
Theorem | prmgt1 10738 | A prime number is an integer greater than 1. (Contributed by Alexander van der Vekens, 17-May-2018.) |
⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | ||
Theorem | prmm2nn0 10739 | Subtracting 2 from a prime number results in a nonnegative integer. (Contributed by Alexander van der Vekens, 30-Aug-2018.) |
⊢ (𝑃 ∈ ℙ → (𝑃 − 2) ∈ ℕ0) | ||
Theorem | oddprmgt2 10740 | An odd prime is greater than 2. (Contributed by AV, 20-Aug-2021.) |
⊢ (𝑃 ∈ (ℙ ∖ {2}) → 2 < 𝑃) | ||
Theorem | oddprmge3 10741 | An odd prime is greater than or equal to 3. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 20-Aug-2021.) |
⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ≥‘3)) | ||
Theorem | sqnprm 10742 | A square is never prime. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ (𝐴 ∈ ℤ → ¬ (𝐴↑2) ∈ ℙ) | ||
Theorem | dvdsprm 10743 | An integer greater than or equal to 2 divides a prime number iff it is equal to it. (Contributed by Paul Chapman, 26-Oct-2012.) |
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ) → (𝑁 ∥ 𝑃 ↔ 𝑁 = 𝑃)) | ||
Theorem | exprmfct 10744* | Every integer greater than or equal to 2 has a prime factor. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 20-Jun-2015.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑁) | ||
Theorem | prmdvdsfz 10745* | Each integer greater than 1 and less then or equal to a fixed number is divisible by a prime less then or equal to this fixed number. (Contributed by AV, 15-Aug-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) | ||
Theorem | nprmdvds1 10746 | No prime number divides 1. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 2-Jul-2015.) |
⊢ (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1) | ||
Theorem | divgcdodd 10747 | Either 𝐴 / (𝐴 gcd 𝐵) is odd or 𝐵 / (𝐴 gcd 𝐵) is odd. (Contributed by Scott Fenton, 19-Apr-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))) | ||
This section is about coprimality with respect to primes, and a special version of Euclid's lemma for primes is provided, see euclemma 10750. | ||
Theorem | coprm 10748 | A prime number either divides an integer or is coprime to it, but not both. Theorem 1.8 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃 ∥ 𝑁 ↔ (𝑃 gcd 𝑁) = 1)) | ||
Theorem | prmrp 10749 | Unequal prime numbers are relatively prime. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑃 gcd 𝑄) = 1 ↔ 𝑃 ≠ 𝑄)) | ||
Theorem | euclemma 10750 | Euclid's lemma. A prime number divides the product of two integers iff it divides at least one of them. Theorem 1.9 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 17-Nov-2012.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ (𝑀 · 𝑁) ↔ (𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁))) | ||
Theorem | isprm6 10751* | A number is prime iff it satisfies Euclid's lemma euclemma 10750. (Contributed by Mario Carneiro, 6-Sep-2015.) |
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) | ||
Theorem | prmdvdsexp 10752 | A prime divides a positive power of an integer iff it divides the integer. (Contributed by Mario Carneiro, 24-Feb-2014.) (Revised by Mario Carneiro, 17-Jul-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴↑𝑁) ↔ 𝑃 ∥ 𝐴)) | ||
Theorem | prmdvdsexpb 10753 | A prime divides a positive power of another iff they are equal. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 24-Feb-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝑄↑𝑁) ↔ 𝑃 = 𝑄)) | ||
Theorem | prmdvdsexpr 10754 | If a prime divides a nonnegative power of another, then they are equal. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄)) | ||
Theorem | prmexpb 10755 | Two positive prime powers are equal iff the primes and the powers are equal. (Contributed by Paul Chapman, 30-Nov-2012.) |
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃↑𝑀) = (𝑄↑𝑁) ↔ (𝑃 = 𝑄 ∧ 𝑀 = 𝑁))) | ||
Theorem | prmfac1 10756 | The factorial of a number only contains primes less than the base. (Contributed by Mario Carneiro, 6-Mar-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (!‘𝑁)) → 𝑃 ≤ 𝑁) | ||
Theorem | rpexp 10757 | If two numbers 𝐴 and 𝐵 are relatively prime, then they are still relatively prime if raised to a power. (Contributed by Mario Carneiro, 24-Feb-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴↑𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)) | ||
Theorem | rpexp1i 10758 | Relative primality passes to asymmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd 𝐵) = 1)) | ||
Theorem | rpexp12i 10759 | Relative primality passes to symmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd (𝐵↑𝑁)) = 1)) | ||
Theorem | prmndvdsfaclt 10760 | A prime number does not divide the factorial of a nonnegative integer less than the prime number. (Contributed by AV, 13-Jul-2021.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑁 < 𝑃 → ¬ 𝑃 ∥ (!‘𝑁))) | ||
Theorem | cncongrprm 10761 | Corollary 2 of Cancellability of Congruences: Two products with a common factor are congruent modulo a prime number not dividing the common factor iff the other factors are congruent modulo the prime number. (Contributed by AV, 13-Jul-2021.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶)) → (((𝐴 · 𝐶) mod 𝑃) = ((𝐵 · 𝐶) mod 𝑃) ↔ (𝐴 mod 𝑃) = (𝐵 mod 𝑃))) | ||
Theorem | isevengcd2 10762 | The predicate "is an even number". An even number and 2 have 2 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) (Revised by AV, 8-Aug-2021.) |
⊢ (𝑍 ∈ ℤ → (2 ∥ 𝑍 ↔ (2 gcd 𝑍) = 2)) | ||
Theorem | isoddgcd1 10763 | The predicate "is an odd number". An odd number and 2 have 1 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) (Revised by AV, 8-Aug-2021.) |
⊢ (𝑍 ∈ ℤ → (¬ 2 ∥ 𝑍 ↔ (2 gcd 𝑍) = 1)) | ||
Theorem | 3lcm2e6 10764 | The least common multiple of three and two is six. The operands are unequal primes and thus coprime, so the result is (the absolute value of) their product. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 27-Aug-2020.) |
⊢ (3 lcm 2) = 6 | ||
Theorem | sqrt2irrlem 10765 | Lemma for sqrt2irr 10766. This is the core of the proof: - if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) ⇒ ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) | ||
Theorem | sqrt2irr 10766 |
The square root of 2 is not rational. That is, for any rational number,
(√‘2) does not equal it. However,
if we were to say "the
square root of 2 is irrational" that would mean something stronger:
"for any rational number, (√‘2)
is apart from it" (the two
statements are equivalent given excluded middle). See sqrt2irrap 10783 for
the proof that the square root of two is irrational.
The proof's core is proven in sqrt2irrlem 10765, which shows that if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd. (Contributed by NM, 8-Jan-2002.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
⊢ (√‘2) ∉ ℚ | ||
Theorem | sqrt2re 10767 | The square root of 2 exists and is a real number. (Contributed by NM, 3-Dec-2004.) |
⊢ (√‘2) ∈ ℝ | ||
Theorem | pw2dvdslemn 10768* | Lemma for pw2dvds 10769. If a natural number has some power of two which does not divide it, there is a highest power of two which does divide it. (Contributed by Jim Kingdon, 14-Nov-2021.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) | ||
Theorem | pw2dvds 10769* | A natural number has a highest power of two which divides it. (Contributed by Jim Kingdon, 14-Nov-2021.) |
⊢ (𝑁 ∈ ℕ → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) | ||
Theorem | pw2dvdseulemle 10770 | Lemma for pw2dvdseu 10771. Powers of two which do and do not divide a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) & ⊢ (𝜑 → (2↑𝐴) ∥ 𝑁) & ⊢ (𝜑 → ¬ (2↑(𝐵 + 1)) ∥ 𝑁) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
Theorem | pw2dvdseu 10771* | A natural number has a unique highest power of two which divides it. (Contributed by Jim Kingdon, 16-Nov-2021.) |
⊢ (𝑁 ∈ ℕ → ∃!𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) | ||
Theorem | oddpwdclemxy 10772* | Lemma for oddpwdc 10777. Another way of stating that decomposing a natural number into a power of two and an odd number is unique. (Contributed by Jim Kingdon, 16-Nov-2021.) |
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) | ||
Theorem | oddpwdclemdvds 10773* | Lemma for oddpwdc 10777. A natural number is divisible by the highest power of two which divides it. (Contributed by Jim Kingdon, 17-Nov-2021.) |
⊢ (𝐴 ∈ ℕ → (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∥ 𝐴) | ||
Theorem | oddpwdclemndvds 10774* | Lemma for oddpwdc 10777. A natural number is not divisible by one more than the highest power of two which divides it. (Contributed by Jim Kingdon, 17-Nov-2021.) |
⊢ (𝐴 ∈ ℕ → ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴) | ||
Theorem | oddpwdclemodd 10775* | Lemma for oddpwdc 10777. Removing the powers of two from a natural number produces an odd number. (Contributed by Jim Kingdon, 16-Nov-2021.) |
⊢ (𝐴 ∈ ℕ → ¬ 2 ∥ (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) | ||
Theorem | oddpwdclemdc 10776* | Lemma for oddpwdc 10777. Decomposing a number into odd and even parts. (Contributed by Jim Kingdon, 16-Nov-2021.) |
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) ↔ (𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) | ||
Theorem | oddpwdc 10777* | The function 𝐹 that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.) |
⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) ⇒ ⊢ 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ | ||
Theorem | sqpweven 10778* | The greatest power of two dividing the square of an integer is an even power of two. (Contributed by Jim Kingdon, 17-Nov-2021.) |
⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) ⇒ ⊢ (𝐴 ∈ ℕ → 2 ∥ (2nd ‘(◡𝐹‘(𝐴↑2)))) | ||
Theorem | 2sqpwodd 10779* | The greatest power of two dividing twice the square of an integer is an odd power of two. (Contributed by Jim Kingdon, 17-Nov-2021.) |
⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) ⇒ ⊢ (𝐴 ∈ ℕ → ¬ 2 ∥ (2nd ‘(◡𝐹‘(2 · (𝐴↑2))))) | ||
Theorem | sqne2sq 10780 | The square of a natural number can never be equal to two times the square of a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2))) | ||
Theorem | znege1 10781 | The absolute value of the difference between two unequal integers is at least one. (Contributed by Jim Kingdon, 31-Jan-2022.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) → 1 ≤ (abs‘(𝐴 − 𝐵))) | ||
Theorem | sqrt2irraplemnn 10782 | Lemma for sqrt2irrap 10783. The square root of 2 is apart from a positive rational expressed as a numerator and denominator. (Contributed by Jim Kingdon, 2-Oct-2021.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) # (𝐴 / 𝐵)) | ||
Theorem | sqrt2irrap 10783 | The square root of 2 is irrational. That is, for any rational number, (√‘2) is apart from it. In the absence of excluded middle, we can distinguish between this and "the square root of 2 is not rational" which is sqrt2irr 10766. (Contributed by Jim Kingdon, 2-Oct-2021.) |
⊢ (𝑄 ∈ ℚ → (√‘2) # 𝑄) | ||
Syntax | cnumer 10784 | Extend class notation to include canonical numerator function. |
class numer | ||
Syntax | cdenom 10785 | Extend class notation to include canonical denominator function. |
class denom | ||
Definition | df-numer 10786* | The canonical numerator of a rational is the numerator of the rational's reduced fraction representation (no common factors, denominator positive). (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ numer = (𝑦 ∈ ℚ ↦ (1st ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑦 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | ||
Definition | df-denom 10787* | The canonical denominator of a rational is the denominator of the rational's reduced fraction representation (no common factors, denominator positive). (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ denom = (𝑦 ∈ ℚ ↦ (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑦 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | ||
Theorem | qnumval 10788* | Value of the canonical numerator function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (numer‘𝐴) = (1st ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | ||
Theorem | qdenval 10789* | Value of the canonical denominator function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | ||
Theorem | qnumdencl 10790 | Lemma for qnumcl 10791 and qdencl 10792. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ)) | ||
Theorem | qnumcl 10791 | The canonical numerator of a rational is an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ) | ||
Theorem | qdencl 10792 | The canonical denominator is a positive integer. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ) | ||
Theorem | fnum 10793 | Canonical numerator defines a function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ numer:ℚ⟶ℤ | ||
Theorem | fden 10794 | Canonical denominator defines a function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ denom:ℚ⟶ℕ | ||
Theorem | qnumdenbi 10795 | Two numbers are the canonical representation of a rational iff they are coprime and have the right quotient. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝐵 gcd 𝐶) = 1 ∧ 𝐴 = (𝐵 / 𝐶)) ↔ ((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶))) | ||
Theorem | qnumdencoprm 10796 | The canonical representation of a rational is fully reduced. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1) | ||
Theorem | qeqnumdivden 10797 | Recover a rational number from its canonical representation. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) | ||
Theorem | qmuldeneqnum 10798 | Multiplying a rational by its denominator results in an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (𝐴 · (denom‘𝐴)) = (numer‘𝐴)) | ||
Theorem | divnumden 10799 | Calculate the reduced form of a quotient using gcd. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵)))) | ||
Theorem | divdenle 10800 | Reducing a quotient never increases the denominator. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) ≤ 𝐵) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |