Home | Intuitionistic Logic Explorer Theorem List (p. 17 of 105) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | a9ev 1601* | At least one individual exists. Weaker version of a9e 1600. (Contributed by NM, 3-Aug-2017.) |
⊢ ∃𝑥 𝑥 = 𝑦 | ||
Theorem | ax9o 1602 | An implication related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.) |
⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) | ||
Theorem | equid 1603 |
Identity law for equality (reflexivity). Lemma 6 of [Tarski] p. 68.
This is often an axiom of equality in textbook systems, but we don't
need it as an axiom since it can be proved from our other axioms.
This proof is similar to Tarski's and makes use of a dummy variable 𝑦. It also works in intuitionistic logic, unlike some other possible ways of proving this theorem. (Contributed by NM, 1-Apr-2005.) |
⊢ 𝑥 = 𝑥 | ||
Theorem | nfequid 1604 | Bound-variable hypothesis builder for 𝑥 = 𝑥. This theorem tells us that any variable, including 𝑥, is effectively not free in 𝑥 = 𝑥, even though 𝑥 is technically free according to the traditional definition of free variable. (Contributed by NM, 13-Jan-2011.) (Revised by NM, 21-Aug-2017.) |
⊢ Ⅎ𝑦 𝑥 = 𝑥 | ||
Theorem | stdpc6 1605 | One of the two equality axioms of standard predicate calculus, called reflexivity of equality. (The other one is stdpc7 1667.) Axiom 6 of [Mendelson] p. 95. Mendelson doesn't say why he prepended the redundant quantifier, but it was probably to be compatible with free logic (which is valid in the empty domain). (Contributed by NM, 16-Feb-2005.) |
⊢ ∀𝑥 𝑥 = 𝑥 | ||
Theorem | equcomi 1606 | Commutative law for equality. Lemma 7 of [Tarski] p. 69. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | ||
Theorem | equcom 1607 | Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | ||
Theorem | equcoms 1608 | An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (𝑦 = 𝑥 → 𝜑) | ||
Theorem | equtr 1609 | A transitive law for equality. (Contributed by NM, 23-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | ||
Theorem | equtrr 1610 | A transitive law for equality. Lemma L17 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 23-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | ||
Theorem | equtr2 1611 | A transitive law for equality. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑦) | ||
Theorem | equequ1 1612 | An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) | ||
Theorem | equequ2 1613 | An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) | ||
Theorem | elequ1 1614 | An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) | ||
Theorem | elequ2 1615 | An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | ||
Theorem | ax11i 1616 | Inference that has ax-11 1411 (without ∀𝑦) as its conclusion and doesn't require ax-10 1410, ax-11 1411, or ax-12 1416 for its proof. The hypotheses may be eliminable without one or more of these axioms in special cases. Proof similar to Lemma 16 of [Tarski] p. 70. (Contributed by NM, 20-May-2008.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | ax10o 1617 |
Show that ax-10o 1618 can be derived from ax-10 1410. An open problem is
whether this theorem can be derived from ax-10 1410 and the others when
ax-11 1411 is replaced with ax-11o 1718. See theorem ax10 1619
for the
rederivation of ax-10 1410 from ax10o 1617.
Normally, ax10o 1617 should be used rather than ax-10o 1618, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
Axiom | ax-10o 1618 |
Axiom ax-10o 1618 ("o" for "old") was the
original version of ax-10 1410,
before it was discovered (in May 2008) that the shorter ax-10 1410 could
replace it. It appears as Axiom scheme C11' in [Megill] p. 448 (p. 16 of
the preprint).
This axiom is redundant, as shown by theorem ax10o 1617. Normally, ax10o 1617 should be used rather than ax-10o 1618, except by theorems specifically studying the latter's properties. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
Theorem | ax10 1619 |
Rederivation of ax-10 1410 from original version ax-10o 1618. See theorem
ax10o 1617 for the derivation of ax-10o 1618 from ax-10 1410.
This theorem should not be referenced in any proof. Instead, use ax-10 1410 above so that uses of ax-10 1410 can be more easily identified. (Contributed by NM, 16-May-2008.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
Theorem | hbae 1620 | All variables are effectively bound in an identical variable specifier. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | ||
Theorem | nfae 1621 | All variables are effectively bound in an identical variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | ||
Theorem | hbaes 1622 | Rule that applies hbae 1620 to antecedent. (Contributed by NM, 5-Aug-1993.) |
⊢ (∀𝑧∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) | ||
Theorem | hbnae 1623 | All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 5-Aug-1993.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) | ||
Theorem | nfnae 1624 | All variables are effectively bound in a distinct variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 | ||
Theorem | hbnaes 1625 | Rule that applies hbnae 1623 to antecedent. (Contributed by NM, 5-Aug-1993.) |
⊢ (∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) | ||
Theorem | naecoms 1626 | A commutation rule for distinct variable specifiers. (Contributed by NM, 2-Jan-2002.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → 𝜑) | ||
Theorem | equs4 1627 | Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 20-May-2014.) |
⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||
Theorem | equsalh 1628 | A useful equivalence related to substitution. New proofs should use equsal 1629 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
Theorem | equsal 1629 | A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 5-Feb-2018.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
Theorem | equsex 1630 | A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | equsexd 1631 | Deduction form of equsex 1630. (Contributed by Jim Kingdon, 29-Dec-2017.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ 𝜒)) | ||
Theorem | dral1 1632 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 24-Nov-1994.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
Theorem | dral2 1633 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓)) | ||
Theorem | drex2 1634 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 ↔ ∃𝑧𝜓)) | ||
Theorem | drnf1 1635 | Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓)) | ||
Theorem | drnf2 1636 | Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓)) | ||
Theorem | spimth 1637 | Closed theorem form of spim 1640. (Contributed by NM, 15-Jan-2008.) (New usage is discouraged.) |
⊢ (∀𝑥((𝜓 → ∀𝑥𝜓) ∧ (𝑥 = 𝑦 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → 𝜓)) | ||
Theorem | spimt 1638 | Closed theorem form of spim 1640. (Contributed by NM, 15-Jan-2008.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Feb-2018.) |
⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → 𝜓)) | ||
Theorem | spimh 1639 | Specialization, using implicit substitition. Compare Lemma 14 of [Tarski] p. 70. The spim 1640 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 8-May-2008.) (New usage is discouraged.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
Theorem | spim 1640 | Specialization, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. The spim 1640 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
Theorem | spimeh 1641 | Existential introduction, using implicit substitition. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by NM, 3-Feb-2015.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
Theorem | spimed 1642 | Deduction version of spime 1643. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 19-Feb-2018.) |
⊢ (𝜒 → Ⅎ𝑥𝜑) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (𝜒 → (𝜑 → ∃𝑥𝜓)) | ||
Theorem | spime 1643 | Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
Theorem | cbv3 1644 | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-May-2018.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
Theorem | cbv3h 1645 | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-May-2018.) |
⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
Theorem | cbv1 1646 | Rule used to change bound variables, using implicit substitution. Revised to format hypotheses to common style. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) | ||
Theorem | cbv1h 1647 | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 13-May-2018.) |
⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) | ||
Theorem | cbv2h 1648 | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | cbv2 1649 | Rule used to change bound variables, using implicit substitution. Revised to align format of hypotheses to common style. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | cbvalh 1650 | Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | ||
Theorem | cbval 1651 | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | ||
Theorem | cbvexh 1652 | Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Feb-2015.) |
⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | ||
Theorem | cbvex 1653 | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | ||
Theorem | chvar 1654 | Implicit substitution of 𝑦 for 𝑥 into a theorem. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by Mario Carneiro, 3-Oct-2016.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | equvini 1655 | A variable introduction law for equality. Lemma 15 of [Monk2] p. 109, however we do not require 𝑧 to be distinct from 𝑥 and 𝑦 (making the proof longer). (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) | ||
Theorem | equveli 1656 | A variable elimination law for equality with no distinct variable requirements. (Compare equvini 1655.) (Contributed by NM, 1-Mar-2013.) (Revised by NM, 3-Feb-2015.) |
⊢ (∀𝑧(𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → 𝑥 = 𝑦) | ||
Theorem | nfald 1657 | If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 6-Jan-2018.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) | ||
Theorem | nfexd 1658 | If 𝑥 is not free in 𝜑, it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof rewritten by Jim Kingdon, 7-Feb-2018.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) | ||
Syntax | wsb 1659 | Extend wff definition to include proper substitution (read "the wff that results when 𝑦 is properly substituted for 𝑥 in wff 𝜑"). (Contributed by NM, 24-Jan-2006.) |
wff [𝑦 / 𝑥]𝜑 | ||
Definition | df-sb 1660 |
Define proper substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the
preprint). For our notation, we use [𝑦 / 𝑥]𝜑 to mean "the wff
that results when 𝑦 is properly substituted for 𝑥 in the
wff
𝜑." We can also use [𝑦 / 𝑥]𝜑 in place of the "free for"
side condition used in traditional predicate calculus; see, for example,
stdpc4 1672.
Our notation was introduced in Haskell B. Curry's Foundations of Mathematical Logic (1977), p. 316 and is frequently used in textbooks of lambda calculus and combinatory logic. This notation improves the common but ambiguous notation, "𝜑(𝑦) is the wff that results when 𝑦 is properly substituted for 𝑥 in 𝜑(𝑥)." For example, if the original 𝜑(𝑥) is 𝑥 = 𝑦, then 𝜑(𝑦) is 𝑦 = 𝑦, from which we obtain that 𝜑(𝑥) is 𝑥 = 𝑥. So what exactly does 𝜑(𝑥) mean? Curry's notation solves this problem. In most books, proper substitution has a somewhat complicated recursive definition with multiple cases based on the occurrences of free and bound variables in the wff. Instead, we use a single formula that is exactly equivalent and gives us a direct definition. We later prove that our definition has the properties we expect of proper substitution (see theorems sbequ 1735, sbcom2 1877 and sbid2v 1886). Note that our definition is valid even when 𝑥 and 𝑦 are replaced with the same variable, as sbid 1671 shows. We achieve this by having 𝑥 free in the first conjunct and bound in the second. We can also achieve this by using a dummy variable, as the alternate definition dfsb7 1881 shows (which some logicians may prefer because it doesn't mix free and bound variables). Another alternate definition which uses a dummy variable is dfsb7a 1884. When 𝑥 and 𝑦 are distinct, we can express proper substitution with the simpler expressions of sb5 1781 and sb6 1780. In classical logic, another possible definition is (𝑥 = 𝑦 ∧ 𝜑) ∨ ∀𝑥(𝑥 = 𝑦 → 𝜑) but we do not have an intuitionistic proof that this is equivalent. There are no restrictions on any of the variables, including what variables may occur in wff 𝜑. (Contributed by NM, 5-Aug-1993.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | ||
Theorem | sbimi 1661 | Infer substitution into antecedent and consequent of an implication. (Contributed by NM, 25-Jun-1998.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) | ||
Theorem | sbbii 1662 | Infer substitution into both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) | ||
Theorem | sb1 1663 | One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.) |
⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||
Theorem | sb2 1664 | One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.) |
⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) | ||
Theorem | sbequ1 1665 | An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | ||
Theorem | sbequ2 1666 | An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | ||
Theorem | stdpc7 1667 | One of the two equality axioms of standard predicate calculus, called substitutivity of equality. (The other one is stdpc6 1605.) Translated to traditional notation, it can be read: "𝑥 = 𝑦 → (𝜑(𝑥, 𝑥) → 𝜑(𝑥, 𝑦)), provided that 𝑦 is free for 𝑥 in 𝜑(𝑥, 𝑦)." Axiom 7 of [Mendelson] p. 95. (Contributed by NM, 15-Feb-2005.) |
⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 → 𝜑)) | ||
Theorem | sbequ12 1668 | An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | ||
Theorem | sbequ12r 1669 | An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) | ||
Theorem | sbequ12a 1670 | An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑥 / 𝑦]𝜑)) | ||
Theorem | sbid 1671 | An identity theorem for substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by NM, 5-Aug-1993.) |
⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | stdpc4 1672 | The specialization axiom of standard predicate calculus. It states that if a statement 𝜑 holds for all 𝑥, then it also holds for the specific case of 𝑦 (properly) substituted for 𝑥. Translated to traditional notation, it can be read: "∀𝑥𝜑(𝑥) → 𝜑(𝑦), provided that 𝑦 is free for 𝑥 in 𝜑(𝑥)." Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 5-Aug-1993.) |
⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | ||
Theorem | sbh 1673 | Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 17-Oct-2004.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | sbf 1674 | Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | sbf2 1675 | Substitution has no effect on a bound variable. (Contributed by NM, 1-Jul-2005.) |
⊢ ([𝑦 / 𝑥]∀𝑥𝜑 ↔ ∀𝑥𝜑) | ||
Theorem | sb6x 1676 | Equivalence involving substitution for a variable not free. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | nfs1f 1677 | If 𝑥 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | ||
Theorem | hbs1f 1678 | If 𝑥 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | sbequ5 1679 | Substitution does not change an identical variable specifier. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 21-Dec-2004.) |
⊢ ([𝑤 / 𝑧]∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑦) | ||
Theorem | sbequ6 1680 | Substitution does not change a distinctor. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 14-May-2005.) |
⊢ ([𝑤 / 𝑧] ¬ ∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) | ||
Theorem | sbt 1681 | A substitution into a theorem remains true. (See chvar 1654 and chvarv 1826 for versions using implicit substitition.) (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ 𝜑 ⇒ ⊢ [𝑦 / 𝑥]𝜑 | ||
Theorem | equsb1 1682 | Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.) |
⊢ [𝑦 / 𝑥]𝑥 = 𝑦 | ||
Theorem | equsb2 1683 | Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.) |
⊢ [𝑦 / 𝑥]𝑦 = 𝑥 | ||
Theorem | sbiedh 1684 | Conversion of implicit substitution to explicit substitution (deduction version of sbieh 1687). New proofs should use sbied 1685 instead. (Contributed by NM, 30-Jun-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) | ||
Theorem | sbied 1685 | Conversion of implicit substitution to explicit substitution (deduction version of sbie 1688). (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) | ||
Theorem | sbiedv 1686* | Conversion of implicit substitution to explicit substitution (deduction version of sbie 1688). (Contributed by NM, 7-Jan-2017.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) | ||
Theorem | sbieh 1687 | Conversion of implicit substitution to explicit substitution. New proofs should use sbie 1688 instead. (Contributed by NM, 30-Jun-1994.) (New usage is discouraged.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | ||
Theorem | sbie 1688 | Conversion of implicit substitution to explicit substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Revised by Wolf Lammen, 30-Apr-2018.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | ||
Theorem | equs5a 1689 | A property related to substitution that unlike equs5 1724 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) |
⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | equs5e 1690 | A property related to substitution that unlike equs5 1724 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) (Revised by NM, 3-Feb-2015.) |
⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) | ||
Theorem | ax11e 1691 | Analogue to ax-11 1411 but for existential quantification. (Contributed by Mario Carneiro and Jim Kingdon, 31-Dec-2017.) (Proved by Mario Carneiro, 9-Feb-2018.) |
⊢ (𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑦𝜑)) | ||
Theorem | ax10oe 1692 | Quantifier Substitution for existential quantifiers. Analogue to ax10o 1617 but for ∃ rather than ∀. (Contributed by Jim Kingdon, 21-Dec-2017.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜓 → ∃𝑦𝜓)) | ||
Theorem | drex1 1693 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) (Revised by NM, 3-Feb-2015.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓)) | ||
Theorem | drsb1 1694 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 5-Aug-1993.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑)) | ||
Theorem | exdistrfor 1695 | Distribution of existential quantifiers, with a bound-variable hypothesis saying that 𝑦 is not free in 𝜑, but 𝑥 can be free in 𝜑 (and there is no distinct variable condition on 𝑥 and 𝑦). (Contributed by Jim Kingdon, 25-Feb-2018.) |
⊢ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥Ⅎ𝑦𝜑) ⇒ ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | ||
Theorem | sb4a 1696 | A version of sb4 1727 that doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) |
⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | equs45f 1697 | Two ways of expressing substitution when 𝑦 is not free in 𝜑. (Contributed by NM, 25-Apr-2008.) |
⊢ (𝜑 → ∀𝑦𝜑) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | sb6f 1698 | Equivalence for substitution when 𝑦 is not free in 𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 30-Apr-2008.) |
⊢ (𝜑 → ∀𝑦𝜑) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | sb5f 1699 | Equivalence for substitution when 𝑦 is not free in 𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 18-May-2008.) |
⊢ (𝜑 → ∀𝑦𝜑) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||
Theorem | sb4e 1700 | One direction of a simplified definition of substitution that unlike sb4 1727 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) |
⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |