HomeHome Intuitionistic Logic Explorer
Theorem List (p. 27 of 133)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2601-2700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem3reeanv 2601* Rearrange three existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010.)
(∃𝑥𝐴𝑦𝐵𝑧𝐶 (𝜑𝜓𝜒) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓 ∧ ∃𝑧𝐶 𝜒))
 
Theoremnfreu1 2602 𝑥 is not free in ∃!𝑥𝐴𝜑. (Contributed by NM, 19-Mar-1997.)
𝑥∃!𝑥𝐴 𝜑
 
Theoremnfrmo1 2603 𝑥 is not free in ∃*𝑥𝐴𝜑. (Contributed by NM, 16-Jun-2017.)
𝑥∃*𝑥𝐴 𝜑
 
Theoremnfreudxy 2604* Not-free deduction for restricted uniqueness. This is a version where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.)
𝑦𝜑    &   (𝜑𝑥𝐴)    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥∃!𝑦𝐴 𝜓)
 
Theoremnfreuxy 2605* Not-free for restricted uniqueness. This is a version where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.)
𝑥𝐴    &   𝑥𝜑       𝑥∃!𝑦𝐴 𝜑
 
Theoremrabid 2606 An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of [Quine] p. 16. (Contributed by NM, 9-Oct-2003.)
(𝑥 ∈ {𝑥𝐴𝜑} ↔ (𝑥𝐴𝜑))
 
Theoremrabid2 2607* An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(𝐴 = {𝑥𝐴𝜑} ↔ ∀𝑥𝐴 𝜑)
 
Theoremrabbi 2608 Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva 2674. (Contributed by NM, 25-Nov-2013.)
(∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
 
Theoremrabswap 2609 Swap with a membership relation in a restricted class abstraction. (Contributed by NM, 4-Jul-2005.)
{𝑥𝐴𝑥𝐵} = {𝑥𝐵𝑥𝐴}
 
Theoremnfrab1 2610 The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.)
𝑥{𝑥𝐴𝜑}
 
Theoremnfrabxy 2611* A variable not free in a wff remains so in a restricted class abstraction. (Contributed by Jim Kingdon, 19-Jul-2018.)
𝑥𝜑    &   𝑥𝐴       𝑥{𝑦𝐴𝜑}
 
Theoremreubida 2612 Formula-building rule for restricted existential quantifier (deduction form). (Contributed by Mario Carneiro, 19-Nov-2016.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
 
Theoremreubidva 2613* Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 13-Nov-2004.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
 
Theoremreubidv 2614* Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 17-Oct-1996.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
 
Theoremreubiia 2615 Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 14-Nov-2004.)
(𝑥𝐴 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐴 𝜓)
 
Theoremreubii 2616 Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 22-Oct-1999.)
(𝜑𝜓)       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐴 𝜓)
 
Theoremrmobida 2617 Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐴 𝜒))
 
Theoremrmobidva 2618* Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐴 𝜒))
 
Theoremrmobidv 2619* Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐴 𝜒))
 
Theoremrmobiia 2620 Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017.)
(𝑥𝐴 → (𝜑𝜓))       (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐴 𝜓)
 
Theoremrmobii 2621 Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017.)
(𝜑𝜓)       (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐴 𝜓)
 
Theoremraleqf 2622 Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
𝑥𝐴    &   𝑥𝐵       (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))
 
Theoremrexeqf 2623 Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 9-Oct-2003.) (Revised by Andrew Salmon, 11-Jul-2011.)
𝑥𝐴    &   𝑥𝐵       (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
 
Theoremreueq1f 2624 Equality theorem for restricted unique existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
𝑥𝐴    &   𝑥𝐵       (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
 
Theoremrmoeq1f 2625 Equality theorem for restricted at-most-one quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
𝑥𝐴    &   𝑥𝐵       (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
 
Theoremraleq 2626* Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.)
(𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))
 
Theoremrexeq 2627* Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.)
(𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
 
Theoremreueq1 2628* Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.)
(𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
 
Theoremrmoeq1 2629* Equality theorem for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
(𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
 
Theoremraleqi 2630* Equality inference for restricted universal qualifier. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐴 = 𝐵       (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑)
 
Theoremrexeqi 2631* Equality inference for restricted existential qualifier. (Contributed by Mario Carneiro, 23-Apr-2015.)
𝐴 = 𝐵       (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑)
 
Theoremraleqdv 2632* Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005.)
(𝜑𝐴 = 𝐵)       (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
 
Theoremrexeqdv 2633* Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.)
(𝜑𝐴 = 𝐵)       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜓))
 
Theoremraleqbi1dv 2634* Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.)
(𝐴 = 𝐵 → (𝜑𝜓))       (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜓))
 
Theoremrexeqbi1dv 2635* Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.)
(𝐴 = 𝐵 → (𝜑𝜓))       (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓))
 
Theoremreueqd 2636* Equality deduction for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.)
(𝐴 = 𝐵 → (𝜑𝜓))       (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜓))
 
Theoremrmoeqd 2637* Equality deduction for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
(𝐴 = 𝐵 → (𝜑𝜓))       (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜓))
 
Theoremraleqbidv 2638* Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
 
Theoremrexeqbidv 2639* Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))
 
Theoremraleqbidva 2640* Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
 
Theoremrexeqbidva 2641* Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))
 
Theoremmormo 2642 Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.)
(∃*𝑥𝜑 → ∃*𝑥𝐴 𝜑)
 
Theoremreu5 2643 Restricted uniqueness in terms of "at most one." (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.)
(∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
 
Theoremreurex 2644 Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.)
(∃!𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜑)
 
Theoremreurmo 2645 Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.)
(∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)
 
Theoremrmo5 2646 Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017.)
(∃*𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))
 
Theoremnrexrmo 2647 Nonexistence implies restricted "at most one". (Contributed by NM, 17-Jun-2017.)
(¬ ∃𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)
 
Theoremcbvralf 2648 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 7-Mar-2004.) (Revised by Mario Carneiro, 9-Oct-2016.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
 
Theoremcbvrexf 2649 Rule used to change bound variables, using implicit substitution. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 9-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
 
Theoremcbvral 2650* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
 
Theoremcbvrex 2651* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
 
Theoremcbvreu 2652* Change the bound variable of a restricted unique existential quantifier using implicit substitution. (Contributed by Mario Carneiro, 15-Oct-2016.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
 
Theoremcbvrmo 2653* Change the bound variable of restricted "at most one" using implicit substitution. (Contributed by NM, 16-Jun-2017.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
 
Theoremcbvralv 2654* Change the bound variable of a restricted universal quantifier using implicit substitution. (Contributed by NM, 28-Jan-1997.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
 
Theoremcbvrexv 2655* Change the bound variable of a restricted existential quantifier using implicit substitution. (Contributed by NM, 2-Jun-1998.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
 
Theoremcbvreuv 2656* Change the bound variable of a restricted unique existential quantifier using implicit substitution. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
 
Theoremcbvrmov 2657* Change the bound variable of a restricted at-most-one quantifier using implicit substitution. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
 
Theoremcbvralvw 2658* Version of cbvralv 2654 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
 
Theoremcbvrexvw 2659* Version of cbvrexv 2655 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
 
Theoremcbvreuvw 2660* Version of cbvreuv 2656 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
 
Theoremcbvraldva2 2661* Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))    &   ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)       (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐵 𝜒))
 
Theoremcbvrexdva2 2662* Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))    &   ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐵 𝜒))
 
Theoremcbvraldva 2663* Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐴 𝜒))
 
Theoremcbvrexdva 2664* Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐴 𝜒))
 
Theoremcbvral2v 2665* Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by NM, 10-Aug-2004.)
(𝑥 = 𝑧 → (𝜑𝜒))    &   (𝑦 = 𝑤 → (𝜒𝜓))       (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
 
Theoremcbvrex2v 2666* Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by FL, 2-Jul-2012.)
(𝑥 = 𝑧 → (𝜑𝜒))    &   (𝑦 = 𝑤 → (𝜒𝜓))       (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑧𝐴𝑤𝐵 𝜓)
 
Theoremcbvral3v 2667* Change bound variables of triple restricted universal quantification, using implicit substitution. (Contributed by NM, 10-May-2005.)
(𝑥 = 𝑤 → (𝜑𝜒))    &   (𝑦 = 𝑣 → (𝜒𝜃))    &   (𝑧 = 𝑢 → (𝜃𝜓))       (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑤𝐴𝑣𝐵𝑢𝐶 𝜓)
 
Theoremcbvralsv 2668* Change bound variable by using a substitution. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.)
(∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 [𝑦 / 𝑥]𝜑)
 
Theoremcbvrexsv 2669* Change bound variable by using a substitution. (Contributed by NM, 2-Mar-2008.) (Revised by Andrew Salmon, 11-Jul-2011.)
(∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 [𝑦 / 𝑥]𝜑)
 
Theoremsbralie 2670* Implicit to explicit substitution that swaps variables in a quantified expression. (Contributed by NM, 5-Sep-2004.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦𝑥 𝜓)
 
Theoremrabbiia 2671 Equivalent wff's yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.)
(𝑥𝐴 → (𝜑𝜓))       {𝑥𝐴𝜑} = {𝑥𝐴𝜓}
 
Theoremrabbii 2672 Equivalent wff's correspond to equal restricted class abstractions. Inference form of rabbidv 2675. (Contributed by Peter Mazsa, 1-Nov-2019.)
(𝜑𝜓)       {𝑥𝐴𝜑} = {𝑥𝐴𝜓}
 
Theoremrabbidva2 2673* Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.)
(𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
 
Theoremrabbidva 2674* Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 28-Nov-2003.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
 
Theoremrabbidv 2675* Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
 
Theoremrabeqf 2676 Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.)
𝑥𝐴    &   𝑥𝐵       (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
 
Theoremrabeqif 2677 Equality theorem for restricted class abstractions. Inference form of rabeqf 2676. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝑥𝐴    &   𝑥𝐵    &   𝐴 = 𝐵       {𝑥𝐴𝜑} = {𝑥𝐵𝜑}
 
Theoremrabeq 2678* Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.)
(𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
 
Theoremrabeqi 2679* Equality theorem for restricted class abstractions. Inference form of rabeq 2678. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝐴 = 𝐵       {𝑥𝐴𝜑} = {𝑥𝐵𝜑}
 
Theoremrabeqdv 2680* Equality of restricted class abstractions. Deduction form of rabeq 2678. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝐴 = 𝐵)       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})
 
Theoremrabeqbidv 2681* Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
 
Theoremrabeqbidva 2682* Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
 
Theoremrabeq2i 2683 Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.)
𝐴 = {𝑥𝐵𝜑}       (𝑥𝐴 ↔ (𝑥𝐵𝜑))
 
Theoremcbvrab 2684 Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
 
Theoremcbvrabv 2685* Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.)
(𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
 
2.1.6  The universal class
 
Syntaxcvv 2686 Extend class notation to include the universal class symbol.
class V
 
Theoremvjust 2687 Soundness justification theorem for df-v 2688. (Contributed by Rodolfo Medina, 27-Apr-2010.)
{𝑥𝑥 = 𝑥} = {𝑦𝑦 = 𝑦}
 
Definitiondf-v 2688 Define the universal class. Definition 5.20 of [TakeutiZaring] p. 21. Also Definition 2.9 of [Quine] p. 19. (Contributed by NM, 5-Aug-1993.)
V = {𝑥𝑥 = 𝑥}
 
Theoremvex 2689 All setvar variables are sets (see isset 2692). Theorem 6.8 of [Quine] p. 43. (Contributed by NM, 5-Aug-1993.)
𝑥 ∈ V
 
Theoremelv 2690 Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2689), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.)
(𝑥 ∈ V → 𝜑)       𝜑
 
Theoremelvd 2691 Technical lemma used to shorten proofs. If a proposition is implied by 𝑥 ∈ V (which is true, see vex 2689) and another antecedent, then it is implied by the other antecedent. (Contributed by Peter Mazsa, 23-Oct-2018.)
((𝜑𝑥 ∈ V) → 𝜓)       (𝜑𝜓)
 
Theoremisset 2692* Two ways to say "𝐴 is a set": A class 𝐴 is a member of the universal class V (see df-v 2688) if and only if the class 𝐴 exists (i.e. there exists some set 𝑥 equal to class 𝐴). Theorem 6.9 of [Quine] p. 43. Notational convention: We will use the notational device "𝐴 ∈ V " to mean "𝐴 is a set" very frequently, for example in uniex 4359. Note the when 𝐴 is not a set, it is called a proper class. In some theorems, such as uniexg 4361, in order to shorten certain proofs we use the more general antecedent 𝐴𝑉 instead of 𝐴 ∈ V to mean "𝐴 is a set."

Note that a constant is implicitly considered distinct from all variables. This is why V is not included in the distinct variable list, even though df-clel 2135 requires that the expression substituted for 𝐵 not contain 𝑥. (Also, the Metamath spec does not allow constants in the distinct variable list.) (Contributed by NM, 26-May-1993.)

(𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
 
Theoremissetf 2693 A version of isset that does not require x and A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.)
𝑥𝐴       (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
 
Theoremisseti 2694* A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.)
𝐴 ∈ V       𝑥 𝑥 = 𝐴
 
Theoremissetri 2695* A way to say "𝐴 is a set" (inference form). (Contributed by NM, 5-Aug-1993.)
𝑥 𝑥 = 𝐴       𝐴 ∈ V
 
Theoremeqvisset 2696 A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 2692 and issetri 2695. (Contributed by BJ, 27-Apr-2019.)
(𝑥 = 𝐴𝐴 ∈ V)
 
Theoremelex 2697 If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
(𝐴𝐵𝐴 ∈ V)
 
Theoremelexi 2698 If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.)
𝐴𝐵       𝐴 ∈ V
 
Theoremelexd 2699 If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝐴𝑉)       (𝜑𝐴 ∈ V)
 
Theoremelisset 2700* An element of a class exists. (Contributed by NM, 1-May-1995.)
(𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13250
  Copyright terms: Public domain < Previous  Next >