HomeHome Intuitionistic Logic Explorer
Theorem List (p. 31 of 133)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3001-3100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrmob 3001* Consequence of "at most one", using implicit substitution. (Contributed by NM, 2-Jan-2015.) (Revised by NM, 16-Jun-2017.)
(𝑥 = 𝐵 → (𝜑𝜓))    &   (𝑥 = 𝐶 → (𝜑𝜒))       ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓)) → (𝐵 = 𝐶 ↔ (𝐶𝐴𝜒)))
 
Theoremrmoi 3002* Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.)
(𝑥 = 𝐵 → (𝜑𝜓))    &   (𝑥 = 𝐶 → (𝜑𝜒))       ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓) ∧ (𝐶𝐴𝜒)) → 𝐵 = 𝐶)
 
2.1.10  Proper substitution of classes for sets into classes
 
Syntaxcsb 3003 Extend class notation to include the proper substitution of a class for a set into another class.
class 𝐴 / 𝑥𝐵
 
Definitiondf-csb 3004* Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 2909, to prevent ambiguity. Theorem sbcel1g 3021 shows an example of how ambiguity could arise if we didn't use distinguished brackets. Theorem sbccsbg 3031 recreates substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.)
𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
 
Theoremcsb2 3005* Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that 𝑥 can be free in 𝐵 but cannot occur in 𝐴. (Contributed by NM, 2-Dec-2013.)
𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑥(𝑥 = 𝐴𝑦𝐵)}
 
Theoremcsbeq1 3006 Analog of dfsbcq 2911 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
(𝐴 = 𝐵𝐴 / 𝑥𝐶 = 𝐵 / 𝑥𝐶)
 
Theoremcbvcsbw 3007* Version of cbvcsb 3008 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.)
𝑦𝐶    &   𝑥𝐷    &   (𝑥 = 𝑦𝐶 = 𝐷)       𝐴 / 𝑥𝐶 = 𝐴 / 𝑦𝐷
 
Theoremcbvcsb 3008 Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on 𝐴. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.)
𝑦𝐶    &   𝑥𝐷    &   (𝑥 = 𝑦𝐶 = 𝐷)       𝐴 / 𝑥𝐶 = 𝐴 / 𝑦𝐷
 
Theoremcbvcsbv 3009* Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
(𝑥 = 𝑦𝐵 = 𝐶)       𝐴 / 𝑥𝐵 = 𝐴 / 𝑦𝐶
 
Theoremcsbeq1d 3010 Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.)
(𝜑𝐴 = 𝐵)       (𝜑𝐴 / 𝑥𝐶 = 𝐵 / 𝑥𝐶)
 
Theoremcsbid 3011 Analog of sbid 1747 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
𝑥 / 𝑥𝐴 = 𝐴
 
Theoremcsbeq1a 3012 Equality theorem for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
(𝑥 = 𝐴𝐵 = 𝐴 / 𝑥𝐵)
 
Theoremcsbco 3013* Composition law for chained substitutions into a class. (Contributed by NM, 10-Nov-2005.)
𝐴 / 𝑦𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
 
Theoremcsbtt 3014 Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by Mario Carneiro, 14-Oct-2016.)
((𝐴𝑉𝑥𝐵) → 𝐴 / 𝑥𝐵 = 𝐵)
 
Theoremcsbconstgf 3015 Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by NM, 10-Nov-2005.)
𝑥𝐵       (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
 
Theoremcsbconstg 3016* Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). csbconstgf 3015 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.)
(𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
 
Theoremsbcel12g 3017 Distribute proper substitution through a membership relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
 
Theoremsbceqg 3018 Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
 
Theoremsbcnel12g 3019 Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
 
Theoremsbcne12g 3020 Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
 
Theoremsbcel1g 3021* Move proper substitution in and out of a membership relation. Note that the scope of [𝐴 / 𝑥] is the wff 𝐵𝐶, whereas the scope of 𝐴 / 𝑥 is the class 𝐵. (Contributed by NM, 10-Nov-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐶))
 
Theoremsbceq1g 3022* Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐶))
 
Theoremsbcel2g 3023* Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐵𝐴 / 𝑥𝐶))
 
Theoremsbceq2g 3024* Move proper substitution to second argument of an equality. (Contributed by NM, 30-Nov-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐵 = 𝐴 / 𝑥𝐶))
 
Theoremcsbcomg 3025* Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.)
((𝐴𝑉𝐵𝑊) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐵 / 𝑦𝐴 / 𝑥𝐶)
 
Theoremcsbeq2 3026 Substituting into equivalent classes gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.)
(∀𝑥 𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
 
Theoremcsbeq2d 3027 Formula-building deduction for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
𝑥𝜑    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
 
Theoremcsbeq2dv 3028* Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
(𝜑𝐵 = 𝐶)       (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
 
Theoremcsbeq2i 3029 Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
𝐵 = 𝐶       𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶
 
Theoremcsbvarg 3030 The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.)
(𝐴𝑉𝐴 / 𝑥𝑥 = 𝐴)
 
Theoremsbccsbg 3031* Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝑦𝐴 / 𝑥{𝑦𝜑}))
 
Theoremsbccsb2g 3032 Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝐴𝐴 / 𝑥{𝑥𝜑}))
 
Theoremnfcsb1d 3033 Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
(𝜑𝑥𝐴)       (𝜑𝑥𝐴 / 𝑥𝐵)
 
Theoremnfcsb1 3034 Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
𝑥𝐴       𝑥𝐴 / 𝑥𝐵
 
Theoremnfcsb1v 3035* Bound-variable hypothesis builder for substitution into a class. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 12-Oct-2016.)
𝑥𝐴 / 𝑥𝐵
 
Theoremnfcsbd 3036 Deduction version of nfcsb 3037. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
𝑦𝜑    &   (𝜑𝑥𝐴)    &   (𝜑𝑥𝐵)       (𝜑𝑥𝐴 / 𝑦𝐵)
 
Theoremnfcsb 3037 Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
𝑥𝐴    &   𝑥𝐵       𝑥𝐴 / 𝑦𝐵
 
Theoremcsbhypf 3038* Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 2735 for class substitution version. (Contributed by NM, 19-Dec-2008.)
𝑥𝐴    &   𝑥𝐶    &   (𝑥 = 𝐴𝐵 = 𝐶)       (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐶)
 
Theoremcsbiebt 3039* Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 3043.) (Contributed by NM, 11-Nov-2005.)
((𝐴𝑉𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
 
Theoremcsbiedf 3040* Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016.)
𝑥𝜑    &   (𝜑𝑥𝐶)    &   (𝜑𝐴𝑉)    &   ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)       (𝜑𝐴 / 𝑥𝐵 = 𝐶)
 
Theoremcsbieb 3041* Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 2-Mar-2008.)
𝐴 ∈ V    &   𝑥𝐶       (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶)
 
Theoremcsbiebg 3042* Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 24-Mar-2013.) (Revised by Mario Carneiro, 11-Dec-2016.)
𝑥𝐶       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
 
Theoremcsbiegf 3043* Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
(𝐴𝑉𝑥𝐶)    &   (𝑥 = 𝐴𝐵 = 𝐶)       (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐶)
 
Theoremcsbief 3044* Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
𝐴 ∈ V    &   𝑥𝐶    &   (𝑥 = 𝐴𝐵 = 𝐶)       𝐴 / 𝑥𝐵 = 𝐶
 
Theoremcsbie 3045* Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.)
𝐴 ∈ V    &   (𝑥 = 𝐴𝐵 = 𝐶)       𝐴 / 𝑥𝐵 = 𝐶
 
Theoremcsbied 3046* Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.)
(𝜑𝐴𝑉)    &   ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)       (𝜑𝐴 / 𝑥𝐵 = 𝐶)
 
Theoremcsbied2 3047* Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.)
(𝜑𝐴𝑉)    &   (𝜑𝐴 = 𝐵)    &   ((𝜑𝑥 = 𝐵) → 𝐶 = 𝐷)       (𝜑𝐴 / 𝑥𝐶 = 𝐷)
 
Theoremcsbie2t 3048* Conversion of implicit substitution to explicit substitution into a class (closed form of csbie2 3049). (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 13-Oct-2016.)
𝐴 ∈ V    &   𝐵 ∈ V       (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐷)
 
Theoremcsbie2 3049* Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007.)
𝐴 ∈ V    &   𝐵 ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷)       𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐷
 
Theoremcsbie2g 3050* Conversion of implicit substitution to explicit class substitution. This version of sbcie 2943 avoids a disjointness condition on 𝑥 and 𝐴 by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016.)
(𝑥 = 𝑦𝐵 = 𝐶)    &   (𝑦 = 𝐴𝐶 = 𝐷)       (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐷)
 
Theoremsbcnestgf 3051 Nest the composition of two substitutions. (Contributed by Mario Carneiro, 11-Nov-2016.)
((𝐴𝑉 ∧ ∀𝑦𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
 
Theoremcsbnestgf 3052 Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
((𝐴𝑉 ∧ ∀𝑦𝑥𝐶) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
 
Theoremsbcnestg 3053* Nest the composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
(𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
 
Theoremcsbnestg 3054* Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
(𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
 
Theoremcsbnest1g 3055 Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
(𝐴𝑉𝐴 / 𝑥𝐵 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑥𝐶)
 
Theoremcsbidmg 3056* Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008.)
(𝐴𝑉𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
 
Theoremsbcco3g 3057* Composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.)
(𝑥 = 𝐴𝐵 = 𝐶)       (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐶 / 𝑦]𝜑))
 
Theoremcsbco3g 3058* Composition of two class substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.)
(𝑥 = 𝐴𝐵 = 𝐶)       (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝐷 = 𝐶 / 𝑦𝐷)
 
Theoremrspcsbela 3059* Special case related to rspsbc 2991. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.)
((𝐴𝐵 ∧ ∀𝑥𝐵 𝐶𝐷) → 𝐴 / 𝑥𝐶𝐷)
 
Theoremsbnfc2 3060* Two ways of expressing "𝑥 is (effectively) not free in 𝐴." (Contributed by Mario Carneiro, 14-Oct-2016.)
(𝑥𝐴 ↔ ∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
 
Theoremcsbabg 3061* Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(𝐴𝑉𝐴 / 𝑥{𝑦𝜑} = {𝑦[𝐴 / 𝑥]𝜑})
 
Theoremcbvralcsf 3062 A more general version of cbvralf 2648 that doesn't require 𝐴 and 𝐵 to be distinct from 𝑥 or 𝑦. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.)
𝑦𝐴    &   𝑥𝐵    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐵 𝜓)
 
Theoremcbvrexcsf 3063 A more general version of cbvrexf 2649 that has no distinct variable restrictions. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.) (Proof shortened by Mario Carneiro, 7-Dec-2014.)
𝑦𝐴    &   𝑥𝐵    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐵 𝜓)
 
Theoremcbvreucsf 3064 A more general version of cbvreuv 2656 that has no distinct variable rextrictions. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.)
𝑦𝐴    &   𝑥𝐵    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐵 𝜓)
 
Theoremcbvrabcsf 3065 A more general version of cbvrab 2684 with no distinct variable restrictions. (Contributed by Andrew Salmon, 13-Jul-2011.)
𝑦𝐴    &   𝑥𝐵    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝐴𝜑} = {𝑦𝐵𝜓}
 
Theoremcbvralv2 3066* Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. (Contributed by David Moews, 1-May-2017.)
(𝑥 = 𝑦 → (𝜓𝜒))    &   (𝑥 = 𝑦𝐴 = 𝐵)       (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐵 𝜒)
 
Theoremcbvrexv2 3067* Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. (Contributed by David Moews, 1-May-2017.)
(𝑥 = 𝑦 → (𝜓𝜒))    &   (𝑥 = 𝑦𝐴 = 𝐵)       (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐵 𝜒)
 
2.1.11  Define basic set operations and relations
 
Syntaxcdif 3068 Extend class notation to include class difference (read: "𝐴 minus 𝐵").
class (𝐴𝐵)
 
Syntaxcun 3069 Extend class notation to include union of two classes (read: "𝐴 union 𝐵").
class (𝐴𝐵)
 
Syntaxcin 3070 Extend class notation to include the intersection of two classes (read: "𝐴 intersect 𝐵").
class (𝐴𝐵)
 
Syntaxwss 3071 Extend wff notation to include the subclass relation. This is read "𝐴 is a subclass of 𝐵 " or "𝐵 includes 𝐴." When 𝐴 exists as a set, it is also read "𝐴 is a subset of 𝐵."
wff 𝐴𝐵
 
Theoremdifjust 3072* Soundness justification theorem for df-dif 3073. (Contributed by Rodolfo Medina, 27-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
{𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴 ∧ ¬ 𝑦𝐵)}
 
Definitiondf-dif 3073* Define class difference, also called relative complement. Definition 5.12 of [TakeutiZaring] p. 20. Contrast this operation with union (𝐴𝐵) (df-un 3075) and intersection (𝐴𝐵) (df-in 3077). Several notations are used in the literature; we chose the convention used in Definition 5.3 of [Eisenberg] p. 67 instead of the more common minus sign to reserve the latter for later use in, e.g., arithmetic. We will use the terminology "𝐴 excludes 𝐵 " to mean 𝐴𝐵. We will use "𝐵 is removed from 𝐴 " to mean 𝐴 ∖ {𝐵} i.e. the removal of an element or equivalently the exclusion of a singleton. (Contributed by NM, 29-Apr-1994.)
(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
 
Theoremunjust 3074* Soundness justification theorem for df-un 3075. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
{𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
 
Definitiondf-un 3075* Define the union of two classes. Definition 5.6 of [TakeutiZaring] p. 16. Contrast this operation with difference (𝐴𝐵) (df-dif 3073) and intersection (𝐴𝐵) (df-in 3077). (Contributed by NM, 23-Aug-1993.)
(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
 
Theoreminjust 3076* Soundness justification theorem for df-in 3077. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
{𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
 
Definitiondf-in 3077* Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. Contrast this operation with union (𝐴𝐵) (df-un 3075) and difference (𝐴𝐵) (df-dif 3073). (Contributed by NM, 29-Apr-1994.)
(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
 
Theoremdfin5 3078* Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.)
(𝐴𝐵) = {𝑥𝐴𝑥𝐵}
 
Theoremdfdif2 3079* Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.)
(𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
 
Theoremeldif 3080 Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994.)
(𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
 
Theoremeldifd 3081 If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3080. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴𝐵)    &   (𝜑 → ¬ 𝐴𝐶)       (𝜑𝐴 ∈ (𝐵𝐶))
 
Theoremeldifad 3082 If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3080. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴 ∈ (𝐵𝐶))       (𝜑𝐴𝐵)
 
Theoremeldifbd 3083 If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 3080. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴 ∈ (𝐵𝐶))       (𝜑 → ¬ 𝐴𝐶)
 
2.1.12  Subclasses and subsets
 
Definitiondf-ss 3084 Define the subclass relationship. Exercise 9 of [TakeutiZaring] p. 18. Note that 𝐴𝐴 (proved in ssid 3117). For a more traditional definition, but requiring a dummy variable, see dfss2 3086. Other possible definitions are given by dfss3 3087, ssequn1 3246, ssequn2 3249, and sseqin2 3295. (Contributed by NM, 27-Apr-1994.)
(𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
 
Theoremdfss 3085 Variant of subclass definition df-ss 3084. (Contributed by NM, 3-Sep-2004.)
(𝐴𝐵𝐴 = (𝐴𝐵))
 
Theoremdfss2 3086* Alternate definition of the subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Jan-2002.)
(𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
 
Theoremdfss3 3087* Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.)
(𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
 
Theoremdfss2f 3088 Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.)
𝑥𝐴    &   𝑥𝐵       (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
 
Theoremdfss3f 3089 Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.)
𝑥𝐴    &   𝑥𝐵       (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
 
Theoremnfss 3090 If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴𝐵. (Contributed by NM, 27-Dec-1996.)
𝑥𝐴    &   𝑥𝐵       𝑥 𝐴𝐵
 
Theoremssel 3091 Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.)
(𝐴𝐵 → (𝐶𝐴𝐶𝐵))
 
Theoremssel2 3092 Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.)
((𝐴𝐵𝐶𝐴) → 𝐶𝐵)
 
Theoremsseli 3093 Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.)
𝐴𝐵       (𝐶𝐴𝐶𝐵)
 
Theoremsselii 3094 Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.)
𝐴𝐵    &   𝐶𝐴       𝐶𝐵
 
Theoremsseldi 3095 Membership inference from subclass relationship. (Contributed by NM, 25-Jun-2014.)
𝐴𝐵    &   (𝜑𝐶𝐴)       (𝜑𝐶𝐵)
 
Theoremsseld 3096 Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.)
(𝜑𝐴𝐵)       (𝜑 → (𝐶𝐴𝐶𝐵))
 
Theoremsselda 3097 Membership deduction from subclass relationship. (Contributed by NM, 26-Jun-2014.)
(𝜑𝐴𝐵)       ((𝜑𝐶𝐴) → 𝐶𝐵)
 
Theoremsseldd 3098 Membership inference from subclass relationship. (Contributed by NM, 14-Dec-2004.)
(𝜑𝐴𝐵)    &   (𝜑𝐶𝐴)       (𝜑𝐶𝐵)
 
Theoremssneld 3099 If a class is not in another class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴𝐵)       (𝜑 → (¬ 𝐶𝐵 → ¬ 𝐶𝐴))
 
Theoremssneldd 3100 If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴𝐵)    &   (𝜑 → ¬ 𝐶𝐵)       (𝜑 → ¬ 𝐶𝐴)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13250
  Copyright terms: Public domain < Previous  Next >