HomeHome Intuitionistic Logic Explorer
Theorem List (p. 50 of 105)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4901-5000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsb8iota 4901 Variable substitution in description binder. Compare sb8eu 1929. (Contributed by NM, 18-Mar-2013.)
𝑦𝜑       (℩𝑥𝜑) = (℩𝑦[𝑦 / 𝑥]𝜑)
 
Theoremiotaeq 4902 Equality theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
(∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑))
 
Theoremiotabi 4903 Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
(∀𝑥(𝜑𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓))
 
Theoremuniabio 4904* Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
(∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = 𝑦)
 
Theoremiotaval 4905* Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
(∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
 
Theoremiotauni 4906 Equivalence between two different forms of . (Contributed by Andrew Salmon, 12-Jul-2011.)
(∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
 
Theoremiotaint 4907 Equivalence between two different forms of . (Contributed by Mario Carneiro, 24-Dec-2016.)
(∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
 
Theoremiota1 4908 Property of iota. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
(∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥))
 
Theoremiotanul 4909 Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.)
(¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
 
Theoremeuiotaex 4910 Theorem 8.23 in [Quine] p. 58, with existential uniqueness condition added. This theorem proves the existence of the class under our definition. (Contributed by Jim Kingdon, 21-Dec-2018.)
(∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
 
Theoremiotass 4911* Value of iota based on a proposition which holds only for values which are subsets of a given class. (Contributed by Mario Carneiro and Jim Kingdon, 21-Dec-2018.)
(∀𝑥(𝜑𝑥𝐴) → (℩𝑥𝜑) ⊆ 𝐴)
 
Theoremiota4 4912 Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.)
(∃!𝑥𝜑[(℩𝑥𝜑) / 𝑥]𝜑)
 
Theoremiota4an 4913 Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.)
(∃!𝑥(𝜑𝜓) → [(℩𝑥(𝜑𝜓)) / 𝑥]𝜑)
 
Theoremiota5 4914* A method for computing iota. (Contributed by NM, 17-Sep-2013.)
((𝜑𝐴𝑉) → (𝜓𝑥 = 𝐴))       ((𝜑𝐴𝑉) → (℩𝑥𝜓) = 𝐴)
 
Theoremiotabidv 4915* Formula-building deduction rule for iota. (Contributed by NM, 20-Aug-2011.)
(𝜑 → (𝜓𝜒))       (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒))
 
Theoremiotabii 4916 Formula-building deduction rule for iota. (Contributed by Mario Carneiro, 2-Oct-2015.)
(𝜑𝜓)       (℩𝑥𝜑) = (℩𝑥𝜓)
 
Theoremiotacl 4917 Membership law for descriptions.

This can useful for expanding an unbounded iota-based definition (see df-iota 4894).

(Contributed by Andrew Salmon, 1-Aug-2011.)

(∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥𝜑})
 
Theoremiota2df 4918 A condition that allows us to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.)
(𝜑𝐵𝑉)    &   (𝜑 → ∃!𝑥𝜓)    &   ((𝜑𝑥 = 𝐵) → (𝜓𝜒))    &   𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑𝑥𝐵)       (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵))
 
Theoremiota2d 4919* A condition that allows us to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.)
(𝜑𝐵𝑉)    &   (𝜑 → ∃!𝑥𝜓)    &   ((𝜑𝑥 = 𝐵) → (𝜓𝜒))       (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵))
 
Theoremiota2 4920* The unique element such that 𝜑. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
(𝑥 = 𝐴 → (𝜑𝜓))       ((𝐴𝐵 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
 
Theoremsniota 4921 A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.)
(∃!𝑥𝜑 → {𝑥𝜑} = {(℩𝑥𝜑)})
 
Theoremcsbiotag 4922* Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.)
(𝐴𝑉𝐴 / 𝑥(℩𝑦𝜑) = (℩𝑦[𝐴 / 𝑥]𝜑))
 
2.6.8  Functions
 
Syntaxwfun 4923 Extend the definition of a wff to include the function predicate. (Read: 𝐴 is a function.)
wff Fun 𝐴
 
Syntaxwfn 4924 Extend the definition of a wff to include the function predicate with a domain. (Read: 𝐴 is a function on 𝐵.)
wff 𝐴 Fn 𝐵
 
Syntaxwf 4925 Extend the definition of a wff to include the function predicate with domain and codomain. (Read: 𝐹 maps 𝐴 into 𝐵.)
wff 𝐹:𝐴𝐵
 
Syntaxwf1 4926 Extend the definition of a wff to include one-to-one functions. (Read: 𝐹 maps 𝐴 one-to-one into 𝐵.) The notation ("1-1" above the arrow) is from Definition 6.15(5) of [TakeutiZaring] p. 27.
wff 𝐹:𝐴1-1𝐵
 
Syntaxwfo 4927 Extend the definition of a wff to include onto functions. (Read: 𝐹 maps 𝐴 onto 𝐵.) The notation ("onto" below the arrow) is from Definition 6.15(4) of [TakeutiZaring] p. 27.
wff 𝐹:𝐴onto𝐵
 
Syntaxwf1o 4928 Extend the definition of a wff to include one-to-one onto functions. (Read: 𝐹 maps 𝐴 one-to-one onto 𝐵.) The notation ("1-1" above the arrow and "onto" below the arrow) is from Definition 6.15(6) of [TakeutiZaring] p. 27.
wff 𝐹:𝐴1-1-onto𝐵
 
Syntaxcfv 4929 Extend the definition of a class to include the value of a function. (Read: The value of 𝐹 at 𝐴, or "𝐹 of 𝐴.")
class (𝐹𝐴)
 
Syntaxwiso 4930 Extend the definition of a wff to include the isomorphism property. (Read: 𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵.)
wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)
 
Definitiondf-fun 4931 Define predicate that determines if some class 𝐴 is a function. Definition 10.1 of [Quine] p. 65. For example, the expression Fun I is true (funi 4959). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 3845 with the maps-to notation (see df-mpt 3847). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 4932), a function with a given domain and codomain (df-f 4933), a one-to-one function (df-f1 4934), an onto function (df-fo 4935), or a one-to-one onto function (df-f1o 4936). For alternate definitions, see dffun2 4939, dffun4 4940, dffun6 4943, dffun7 4955, dffun8 4956, and dffun9 4957. (Contributed by NM, 1-Aug-1994.)
(Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
 
Definitiondf-fn 4932 Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.)
(𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵))
 
Definitiondf-f 4933 Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.)
(𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
 
Definitiondf-f1 4934 Define a one-to-one function. Compare Definition 6.15(5) of [TakeutiZaring] p. 27. We use their notation ("1-1" above the arrow). (Contributed by NM, 1-Aug-1994.)
(𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
 
Definitiondf-fo 4935 Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). (Contributed by NM, 1-Aug-1994.)
(𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
 
Definitiondf-f1o 4936 Define a one-to-one onto function. Compare Definition 6.15(6) of [TakeutiZaring] p. 27. We use their notation ("1-1" above the arrow and "onto" below the arrow). (Contributed by NM, 1-Aug-1994.)
(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
 
Definitiondf-fv 4937* Define the value of a function, (𝐹𝐴), also known as function application. For example, ( I ‘∅) = ∅. Typically, function 𝐹 is defined using maps-to notation (see df-mpt 3847), but this is not required. For example, F = { 2 , 6 , 3 , 9 } -> ( F 3 ) = 9 . We will later define two-argument functions using ordered pairs as (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩). This particular definition is quite convenient: it can be applied to any class and evaluates to the empty set when it is not meaningful. The left apostrophe notation originated with Peano and was adopted in Definition *30.01 of [WhiteheadRussell] p. 235, Definition 10.11 of [Quine] p. 68, and Definition 6.11 of [TakeutiZaring] p. 26. It means the same thing as the more familiar 𝐹(𝐴) notation for a function's value at 𝐴, i.e. "𝐹 of 𝐴," but without context-dependent notational ambiguity. (Contributed by NM, 1-Aug-1994.) Revised to use . (Revised by Scott Fenton, 6-Oct-2017.)
(𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
 
Definitiondf-isom 4938* Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵." Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
 
Theoremdffun2 4939* Alternate definition of a function. (Contributed by NM, 29-Dec-1996.)
(Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑥𝐴𝑧) → 𝑦 = 𝑧)))
 
Theoremdffun4 4940* Alternate definition of a function. Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 29-Dec-1996.)
(Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)))
 
Theoremdffun5r 4941* A way of proving a relation is a function, analogous to mo2r 1968. (Contributed by Jim Kingdon, 27-May-2020.)
((Rel 𝐴 ∧ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧)) → Fun 𝐴)
 
Theoremdffun6f 4942* Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴    &   𝑦𝐴       (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
 
Theoremdffun6 4943* Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.)
(Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
 
Theoremfunmo 4944* A function has at most one value for each argument. (Contributed by NM, 24-May-1998.)
(Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)
 
Theoremdffun4f 4945* Definition of function like dffun4 4940 but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 17-Mar-2019.)
𝑥𝐴    &   𝑦𝐴    &   𝑧𝐴       (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)))
 
Theoremfunrel 4946 A function is a relation. (Contributed by NM, 1-Aug-1994.)
(Fun 𝐴 → Rel 𝐴)
 
Theoremfunss 4947 Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
(𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))
 
Theoremfuneq 4948 Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
(𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
 
Theoremfuneqi 4949 Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
𝐴 = 𝐵       (Fun 𝐴 ↔ Fun 𝐵)
 
Theoremfuneqd 4950 Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.)
(𝜑𝐴 = 𝐵)       (𝜑 → (Fun 𝐴 ↔ Fun 𝐵))
 
Theoremnffun 4951 Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
𝑥𝐹       𝑥Fun 𝐹
 
Theoremsbcfung 4952 Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
(𝐴𝑉 → ([𝐴 / 𝑥]Fun 𝐹 ↔ Fun 𝐴 / 𝑥𝐹))
 
Theoremfuneu 4953* There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((Fun 𝐹𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦)
 
Theoremfuneu2 4954* There is exactly one value of a function. (Contributed by NM, 3-Aug-1994.)
((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐹) → ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)
 
Theoremdffun7 4955* Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one." However, dffun8 4956 shows that it doesn't matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.)
(Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦))
 
Theoremdffun8 4956* Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. Compare dffun7 4955. (Contributed by NM, 4-Nov-2002.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦))
 
Theoremdffun9 4957* Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.)
(Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 ∈ ran 𝐴 𝑥𝐴𝑦))
 
Theoremfunfn 4958 An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.)
(Fun 𝐴𝐴 Fn dom 𝐴)
 
Theoremfuni 4959 The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. (Contributed by NM, 30-Apr-1998.)
Fun I
 
Theoremnfunv 4960 The universe is not a function. (Contributed by Raph Levien, 27-Jan-2004.)
¬ Fun V
 
Theoremfunopg 4961 A Kuratowski ordered pair is a function only if its components are equal. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
((𝐴𝑉𝐵𝑊 ∧ Fun ⟨𝐴, 𝐵⟩) → 𝐴 = 𝐵)
 
Theoremfunopab 4962* A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.)
(Fun {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑)
 
Theoremfunopabeq 4963* A class of ordered pairs of values is a function. (Contributed by NM, 14-Nov-1995.)
Fun {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴}
 
Theoremfunopab4 4964* A class of ordered pairs of values in the form used by df-mpt 3847 is a function. (Contributed by NM, 17-Feb-2013.)
Fun {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐴)}
 
Theoremfunmpt 4965 A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.)
Fun (𝑥𝐴𝐵)
 
Theoremfunmpt2 4966 Functionality of a class given by a "maps to" notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.)
𝐹 = (𝑥𝐴𝐵)       Fun 𝐹
 
Theoremfunco 4967 The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
 
Theoremfunres 4968 A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.)
(Fun 𝐹 → Fun (𝐹𝐴))
 
Theoremfunssres 4969 The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.)
((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
 
Theoremfun2ssres 4970 Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.)
((Fun 𝐹𝐺𝐹𝐴 ⊆ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
 
Theoremfunun 4971 The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.)
(((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))
 
Theoremfuncnvsn 4972 The converse singleton of an ordered pair is a function. This is equivalent to funsn 4975 via cnvsn 4830, but stating it this way allows us to skip the sethood assumptions on 𝐴 and 𝐵. (Contributed by NM, 30-Apr-2015.)
Fun {⟨𝐴, 𝐵⟩}
 
Theoremfunsng 4973 A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.)
((𝐴𝑉𝐵𝑊) → Fun {⟨𝐴, 𝐵⟩})
 
Theoremfnsng 4974 Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.)
((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} Fn {𝐴})
 
Theoremfunsn 4975 A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 12-Aug-1994.)
𝐴 ∈ V    &   𝐵 ∈ V       Fun {⟨𝐴, 𝐵⟩}
 
Theoremfunprg 4976 A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.)
(((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})
 
Theoremfuntpg 4977 A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
(((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩})
 
Theoremfunpr 4978 A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V       (𝐴𝐵 → Fun {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩})
 
Theoremfuntp 4979 A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V    &   𝐸 ∈ V    &   𝐹 ∈ V       ((𝐴𝐵𝐴𝐶𝐵𝐶) → Fun {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩})
 
Theoremfnsn 4980 Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
𝐴 ∈ V    &   𝐵 ∈ V       {⟨𝐴, 𝐵⟩} Fn {𝐴}
 
Theoremfnprg 4981 Function with a domain of two different values. (Contributed by FL, 26-Jun-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
(((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} Fn {𝐴, 𝐵})
 
Theoremfntpg 4982 Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
(((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} Fn {𝑋, 𝑌, 𝑍})
 
Theoremfntp 4983 A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V    &   𝐸 ∈ V    &   𝐹 ∈ V       ((𝐴𝐵𝐴𝐶𝐵𝐶) → {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} Fn {𝐴, 𝐵, 𝐶})
 
Theoremfun0 4984 The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.)
Fun ∅
 
Theoremfuncnvcnv 4985 The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.)
(Fun 𝐴 → Fun 𝐴)
 
Theoremfuncnv2 4986* A simpler equivalence for single-rooted (see funcnv 4987). (Contributed by NM, 9-Aug-2004.)
(Fun 𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦)
 
Theoremfuncnv 4987* The converse of a class is a function iff the class is single-rooted, which means that for any 𝑦 in the range of 𝐴 there is at most one 𝑥 such that 𝑥𝐴𝑦. Definition of single-rooted in [Enderton] p. 43. See funcnv2 4986 for a simpler version. (Contributed by NM, 13-Aug-2004.)
(Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦)
 
Theoremfuncnv3 4988* A condition showing a class is single-rooted. (See funcnv 4987). (Contributed by NM, 26-May-2006.)
(Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃!𝑥 ∈ dom 𝐴 𝑥𝐴𝑦)
 
Theoremfuncnveq 4989* Another way of expressing that a class is single-rooted. Counterpart to dffun2 4939. (Contributed by Jim Kingdon, 24-Dec-2018.)
(Fun 𝐴 ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑧𝐴𝑦) → 𝑥 = 𝑧))
 
Theoremfun2cnv 4990* The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of [TakeutiZaring] p. 23, who use the notation "Un(A)" for single-valued. Note that 𝐴 is not necessarily a function. (Contributed by NM, 13-Aug-2004.)
(Fun 𝐴 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
 
Theoremsvrelfun 4991 A single-valued relation is a function. (See fun2cnv 4990 for "single-valued.") Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 17-Jan-2006.)
(Fun 𝐴 ↔ (Rel 𝐴 ∧ Fun 𝐴))
 
Theoremfncnv 4992* Single-rootedness (see funcnv 4987) of a class cut down by a cross product. (Contributed by NM, 5-Mar-2007.)
((𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦)
 
Theoremfun11 4993* Two ways of stating that 𝐴 is one-to-one (but not necessarily a function). Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one (but not necessarily a function). (Contributed by NM, 17-Jan-2006.)
((Fun 𝐴 ∧ Fun 𝐴) ↔ ∀𝑥𝑦𝑧𝑤((𝑥𝐴𝑦𝑧𝐴𝑤) → (𝑥 = 𝑧𝑦 = 𝑤)))
 
Theoremfununi 4994* The union of a chain (with respect to inclusion) of functions is a function. (Contributed by NM, 10-Aug-2004.)
(∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
 
Theoremfuncnvuni 4995* The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv 4987 for "single-rooted" definition.) (Contributed by NM, 11-Aug-2004.)
(∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
 
Theoremfun11uni 4996* The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by NM, 11-Aug-2004.)
(∀𝑓𝐴 ((Fun 𝑓 ∧ Fun 𝑓) ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (Fun 𝐴 ∧ Fun 𝐴))
 
Theoremfunin 4997 The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(Fun 𝐹 → Fun (𝐹𝐺))
 
Theoremfunres11 4998 The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.)
(Fun 𝐹 → Fun (𝐹𝐴))
 
Theoremfuncnvres 4999 The converse of a restricted function. (Contributed by NM, 27-Mar-1998.)
(Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
 
Theoremcnvresid 5000 Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.)
( I ↾ 𝐴) = ( I ↾ 𝐴)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10490
  Copyright terms: Public domain < Previous  Next >