HomeHome Intuitionistic Logic Explorer
Theorem List (p. 54 of 132)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5301-5400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremf1fun 5301 A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴1-1𝐵 → Fun 𝐹)
 
Theoremf1rel 5302 A one-to-one onto mapping is a relation. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴1-1𝐵 → Rel 𝐹)
 
Theoremf1dm 5303 The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
 
Theoremf1ss 5304 A function that is one-to-one is also one-to-one on some superset of its range. (Contributed by Mario Carneiro, 12-Jan-2013.)
((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐹:𝐴1-1𝐶)
 
Theoremf1ssr 5305 Combine a one-to-one function with a restriction on the domain. (Contributed by Stefan O'Rear, 20-Feb-2015.)
((𝐹:𝐴1-1𝐵 ∧ ran 𝐹𝐶) → 𝐹:𝐴1-1𝐶)
 
Theoremf1ff1 5306 If a function is one-to-one from A to B and is also a function from A to C, then it is a one-to-one function from A to C. (Contributed by BJ, 4-Jul-2022.)
((𝐹:𝐴1-1𝐵𝐹:𝐴𝐶) → 𝐹:𝐴1-1𝐶)
 
Theoremf1ssres 5307 A function that is one-to-one is also one-to-one on any subclass of its domain. (Contributed by Mario Carneiro, 17-Jan-2015.)
((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)
 
Theoremf1resf1 5308 The restriction of an injective function is injective. (Contributed by AV, 28-Jun-2022.)
(((𝐹:𝐴1-1𝐵𝐶𝐴) ∧ (𝐹𝐶):𝐶𝐷) → (𝐹𝐶):𝐶1-1𝐷)
 
Theoremf1cnvcnv 5309 Two ways to express that a set 𝐴 (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.)
(𝐴:dom 𝐴1-1→V ↔ (Fun 𝐴 ∧ Fun 𝐴))
 
Theoremf1co 5310 Composition of one-to-one functions. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.)
((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)
 
Theoremfoeq1 5311 Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
(𝐹 = 𝐺 → (𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵))
 
Theoremfoeq2 5312 Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐵 → (𝐹:𝐴onto𝐶𝐹:𝐵onto𝐶))
 
Theoremfoeq3 5313 Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
 
Theoremnffo 5314 Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.)
𝑥𝐹    &   𝑥𝐴    &   𝑥𝐵       𝑥 𝐹:𝐴onto𝐵
 
Theoremfof 5315 An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.)
(𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
 
Theoremfofun 5316 An onto mapping is a function. (Contributed by NM, 29-Mar-2008.)
(𝐹:𝐴onto𝐵 → Fun 𝐹)
 
Theoremfofn 5317 An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.)
(𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
 
Theoremforn 5318 The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.)
(𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
 
Theoremdffo2 5319 Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.)
(𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
 
Theoremfoima 5320 The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.)
(𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)
 
Theoremdffn4 5321 A function maps onto its range. (Contributed by NM, 10-May-1998.)
(𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
 
Theoremfunforn 5322 A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.)
(Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)
 
Theoremfodmrnu 5323 An onto function has unique domain and range. (Contributed by NM, 5-Nov-2006.)
((𝐹:𝐴onto𝐵𝐹:𝐶onto𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremfores 5324 Restriction of a function. (Contributed by NM, 4-Mar-1997.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))
 
Theoremfoco 5325 Composition of onto functions. (Contributed by NM, 22-Mar-2006.)
((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):𝐴onto𝐶)
 
Theoremf1oeq1 5326 Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
(𝐹 = 𝐺 → (𝐹:𝐴1-1-onto𝐵𝐺:𝐴1-1-onto𝐵))
 
Theoremf1oeq2 5327 Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
(𝐴 = 𝐵 → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))
 
Theoremf1oeq3 5328 Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
(𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))
 
Theoremf1oeq23 5329 Equality theorem for one-to-one onto functions. (Contributed by FL, 14-Jul-2012.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐹:𝐴1-1-onto𝐶𝐹:𝐵1-1-onto𝐷))
 
Theoremf1eq123d 5330 Equality deduction for one-to-one functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐹:𝐴1-1𝐶𝐺:𝐵1-1𝐷))
 
Theoremfoeq123d 5331 Equality deduction for onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐹:𝐴onto𝐶𝐺:𝐵onto𝐷))
 
Theoremf1oeq123d 5332 Equality deduction for one-to-one onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐹:𝐴1-1-onto𝐶𝐺:𝐵1-1-onto𝐷))
 
Theoremnff1o 5333 Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004.)
𝑥𝐹    &   𝑥𝐴    &   𝑥𝐵       𝑥 𝐹:𝐴1-1-onto𝐵
 
Theoremf1of1 5334 A one-to-one onto mapping is a one-to-one mapping. (Contributed by NM, 12-Dec-2003.)
(𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
 
Theoremf1of 5335 A one-to-one onto mapping is a mapping. (Contributed by NM, 12-Dec-2003.)
(𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
 
Theoremf1ofn 5336 A one-to-one onto mapping is function on its domain. (Contributed by NM, 12-Dec-2003.)
(𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
 
Theoremf1ofun 5337 A one-to-one onto mapping is a function. (Contributed by NM, 12-Dec-2003.)
(𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
 
Theoremf1orel 5338 A one-to-one onto mapping is a relation. (Contributed by NM, 13-Dec-2003.)
(𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
 
Theoremf1odm 5339 The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
 
Theoremdff1o2 5340 Alternate definition of one-to-one onto function. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
 
Theoremdff1o3 5341 Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴onto𝐵 ∧ Fun 𝐹))
 
Theoremf1ofo 5342 A one-to-one onto function is an onto function. (Contributed by NM, 28-Apr-2004.)
(𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
 
Theoremdff1o4 5343 Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
 
Theoremdff1o5 5344 Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵 ∧ ran 𝐹 = 𝐵))
 
Theoremf1orn 5345 A one-to-one function maps onto its range. (Contributed by NM, 13-Aug-2004.)
(𝐹:𝐴1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹))
 
Theoremf1f1orn 5346 A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004.)
(𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
 
Theoremf1oabexg 5347* The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008.)
𝐹 = {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)}       ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
 
Theoremf1ocnv 5348 The converse of a one-to-one onto function is also one-to-one onto. (Contributed by NM, 11-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
 
Theoremf1ocnvb 5349 A relation is a one-to-one onto function iff its converse is a one-to-one onto function with domain and range interchanged. (Contributed by NM, 8-Dec-2003.)
(Rel 𝐹 → (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴))
 
Theoremf1ores 5350 The restriction of a one-to-one function maps one-to-one onto the image. (Contributed by NM, 25-Mar-1998.)
((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
 
Theoremf1orescnv 5351 The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008.)
((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑃):𝑃1-1-onto𝑅)
 
Theoremf1imacnv 5352 Preimage of an image. (Contributed by NM, 30-Sep-2004.)
((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹 “ (𝐹𝐶)) = 𝐶)
 
Theoremfoimacnv 5353 A reverse version of f1imacnv 5352. (Contributed by Jeff Hankins, 16-Jul-2009.)
((𝐹:𝐴onto𝐵𝐶𝐵) → (𝐹 “ (𝐹𝐶)) = 𝐶)
 
Theoremfoun 5354 The union of two onto functions with disjoint domains is an onto function. (Contributed by Mario Carneiro, 22-Jun-2016.)
(((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺):(𝐴𝐶)–onto→(𝐵𝐷))
 
Theoremf1oun 5355 The union of two one-to-one onto functions with disjoint domains and ranges. (Contributed by NM, 26-Mar-1998.)
(((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1-onto→(𝐵𝐷))
 
Theoremfun11iun 5356* The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by Mario Carneiro, 20-May-2013.) (Revised by Mario Carneiro, 24-Jun-2015.)
(𝑥 = 𝑦𝐵 = 𝐶)    &   𝐵 ∈ V       (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷1-1𝑆)
 
Theoremresdif 5357 The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009.)
((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))
 
Theoremf1oco 5358 Composition of one-to-one onto functions. (Contributed by NM, 19-Mar-1998.)
((𝐹:𝐵1-1-onto𝐶𝐺:𝐴1-1-onto𝐵) → (𝐹𝐺):𝐴1-1-onto𝐶)
 
Theoremf1cnv 5359 The converse of an injective function is bijective. (Contributed by FL, 11-Nov-2011.)
(𝐹:𝐴1-1𝐵𝐹:ran 𝐹1-1-onto𝐴)
 
Theoremfuncocnv2 5360 Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.)
(Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
 
Theoremfococnv2 5361 The composition of an onto function and its converse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
(𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
 
Theoremf1ococnv2 5362 The composition of a one-to-one onto function and its converse equals the identity relation restricted to the function's range. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Stefan O'Rear, 12-Feb-2015.)
(𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
 
Theoremf1cocnv2 5363 Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.)
(𝐹:𝐴1-1𝐵 → (𝐹𝐹) = ( I ↾ ran 𝐹))
 
Theoremf1ococnv1 5364 The composition of a one-to-one onto function's converse and itself equals the identity relation restricted to the function's domain. (Contributed by NM, 13-Dec-2003.)
(𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
 
Theoremf1cocnv1 5365 Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.)
(𝐹:𝐴1-1𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
 
Theoremfuncoeqres 5366 Express a constraint on a composition as a constraint on the composand. (Contributed by Stefan O'Rear, 7-Mar-2015.)
((Fun 𝐺 ∧ (𝐹𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻𝐺))
 
Theoremffoss 5367* Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by NM, 10-May-1998.)
𝐹 ∈ V       (𝐹:𝐴𝐵 ↔ ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
 
Theoremf11o 5368* Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998.)
𝐹 ∈ V       (𝐹:𝐴1-1𝐵 ↔ ∃𝑥(𝐹:𝐴1-1-onto𝑥𝑥𝐵))
 
Theoremf10 5369 The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.)
∅:∅–1-1𝐴
 
Theoremf1o00 5370 One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.)
(𝐹:∅–1-1-onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
 
Theoremfo00 5371 Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006.)
(𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
 
Theoremf1o0 5372 One-to-one onto mapping of the empty set. (Contributed by NM, 10-Sep-2004.)
∅:∅–1-1-onto→∅
 
Theoremf1oi 5373 A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
( I ↾ 𝐴):𝐴1-1-onto𝐴
 
Theoremf1ovi 5374 The identity relation is a one-to-one onto function on the universe. (Contributed by NM, 16-May-2004.)
I :V–1-1-onto→V
 
Theoremf1osn 5375 A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
𝐴 ∈ V    &   𝐵 ∈ V       {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}
 
Theoremf1osng 5376 A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.)
((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
 
Theoremf1sng 5377 A singleton of an ordered pair is a one-to-one function. (Contributed by AV, 17-Apr-2021.)
((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1𝑊)
 
Theoremfsnd 5378 A singleton of an ordered pair is a function. (Contributed by AV, 17-Apr-2021.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 → {⟨𝐴, 𝐵⟩}:{𝐴}⟶𝑊)
 
Theoremf1oprg 5379 An unordered pair of ordered pairs with different elements is a one-to-one onto function. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
(((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ((𝐴𝐶𝐵𝐷) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}:{𝐴, 𝐶}–1-1-onto→{𝐵, 𝐷}))
 
Theoremtz6.12-2 5380* Function value when 𝐹 is not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
(¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
 
Theoremfveu 5381* The value of a function at a unique point. (Contributed by Scott Fenton, 6-Oct-2017.)
(∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = {𝑥𝐴𝐹𝑥})
 
Theorembrprcneu 5382* If 𝐴 is a proper class and 𝐹 is any class, then there is no unique set which is related to 𝐴 through the binary relation 𝐹. (Contributed by Scott Fenton, 7-Oct-2017.)
𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥)
 
Theoremfvprc 5383 A function's value at a proper class is the empty set. (Contributed by NM, 20-May-1998.)
𝐴 ∈ V → (𝐹𝐴) = ∅)
 
Theoremfv2 5384* Alternate definition of function value. Definition 10.11 of [Quine] p. 68. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝐹𝐴) = {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥)}
 
Theoremdffv3g 5385* A definition of function value in terms of iota. (Contributed by Jim Kingdon, 29-Dec-2018.)
(𝐴𝑉 → (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})))
 
Theoremdffv4g 5386* The previous definition of function value, from before the operator was introduced. Although based on the idea embodied by Definition 10.2 of [Quine] p. 65 (see args 4878), this definition apparently does not appear in the literature. (Contributed by NM, 1-Aug-1994.)
(𝐴𝑉 → (𝐹𝐴) = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}})
 
Theoremelfv 5387* Membership in a function value. (Contributed by NM, 30-Apr-2004.)
(𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥(𝐴𝑥 ∧ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)))
 
Theoremfveq1 5388 Equality theorem for function value. (Contributed by NM, 29-Dec-1996.)
(𝐹 = 𝐺 → (𝐹𝐴) = (𝐺𝐴))
 
Theoremfveq2 5389 Equality theorem for function value. (Contributed by NM, 29-Dec-1996.)
(𝐴 = 𝐵 → (𝐹𝐴) = (𝐹𝐵))
 
Theoremfveq1i 5390 Equality inference for function value. (Contributed by NM, 2-Sep-2003.)
𝐹 = 𝐺       (𝐹𝐴) = (𝐺𝐴)
 
Theoremfveq1d 5391 Equality deduction for function value. (Contributed by NM, 2-Sep-2003.)
(𝜑𝐹 = 𝐺)       (𝜑 → (𝐹𝐴) = (𝐺𝐴))
 
Theoremfveq2i 5392 Equality inference for function value. (Contributed by NM, 28-Jul-1999.)
𝐴 = 𝐵       (𝐹𝐴) = (𝐹𝐵)
 
Theoremfveq2d 5393 Equality deduction for function value. (Contributed by NM, 29-May-1999.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐹𝐴) = (𝐹𝐵))
 
Theorem2fveq3 5394 Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.)
(𝐴 = 𝐵 → (𝐹‘(𝐺𝐴)) = (𝐹‘(𝐺𝐵)))
 
Theoremfveq12i 5395 Equality deduction for function value. (Contributed by FL, 27-Jun-2014.)
𝐹 = 𝐺    &   𝐴 = 𝐵       (𝐹𝐴) = (𝐺𝐵)
 
Theoremfveq12d 5396 Equality deduction for function value. (Contributed by FL, 22-Dec-2008.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐹𝐴) = (𝐺𝐵))
 
Theoremfveqeq2d 5397 Equality deduction for function value. (Contributed by BJ, 30-Aug-2022.)
(𝜑𝐴 = 𝐵)       (𝜑 → ((𝐹𝐴) = 𝐶 ↔ (𝐹𝐵) = 𝐶))
 
Theoremfveqeq2 5398 Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.)
(𝐴 = 𝐵 → ((𝐹𝐴) = 𝐶 ↔ (𝐹𝐵) = 𝐶))
 
Theoremnffv 5399 Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐹    &   𝑥𝐴       𝑥(𝐹𝐴)
 
Theoremnffvmpt1 5400* Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.)
𝑥((𝑥𝐴𝐵)‘𝐶)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13145
  Copyright terms: Public domain < Previous  Next >