 Home Intuitionistic Logic ExplorerTheorem List (p. 55 of 102) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5401-5500   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremfniunfv 5401* The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.)
(𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = ran 𝐹)

Theoremfuniunfvdm 5402* The indexed union of a function's values is the union of its image under the index class. This theorem is a slight variation of fniunfv 5401. (Contributed by Jim Kingdon, 10-Jan-2019.)
(𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))

Theoremfuniunfvdmf 5403* The indexed union of a function's values is the union of its image under the index class. This version of funiunfvdm 5402 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by Jim Kingdon, 10-Jan-2019.)
𝑥𝐹       (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))

Theoremeluniimadm 5404* Membership in the union of an image of a function. (Contributed by Jim Kingdon, 10-Jan-2019.)
(𝐹 Fn 𝐴 → (𝐵 (𝐹𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ (𝐹𝑥)))

Theoremelunirn 5405* Membership in the union of the range of a function. (Contributed by NM, 24-Sep-2006.)
(Fun 𝐹 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))

Theoremfnunirn 5406* Membership in a union of some function-defined family of sets. (Contributed by Stefan O'Rear, 30-Jan-2015.)
(𝐹 Fn 𝐼 → (𝐴 ran 𝐹 ↔ ∃𝑥𝐼 𝐴 ∈ (𝐹𝑥)))

Theoremdff13 5407* A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 29-Oct-1996.)
(𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))

Theoremf1veqaeq 5408 If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))

Theoremdff13f 5409* A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 31-Jul-2003.)
𝑥𝐹    &   𝑦𝐹       (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))

Theoremf1mpt 5410* Express injection for a mapping operation. (Contributed by Mario Carneiro, 2-Jan-2017.)
𝐹 = (𝑥𝐴𝐶)    &   (𝑥 = 𝑦𝐶 = 𝐷)       (𝐹:𝐴1-1𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)))

Theoremf1fveq 5411 Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997.)
((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) ↔ 𝐶 = 𝐷))

Theoremf1elima 5412 Membership in the image of a 1-1 map. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐹:𝐴1-1𝐵𝑋𝐴𝑌𝐴) → ((𝐹𝑋) ∈ (𝐹𝑌) ↔ 𝑋𝑌))

Theoremf1imass 5413 Taking images under a one-to-one function preserves subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.)
((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊆ (𝐹𝐷) ↔ 𝐶𝐷))

Theoremf1imaeq 5414 Taking images under a one-to-one function preserves equality. (Contributed by Stefan O'Rear, 30-Oct-2014.)
((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) ↔ 𝐶 = 𝐷))

Theoremf1imapss 5415 Taking images under a one-to-one function preserves proper subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.)
((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊊ (𝐹𝐷) ↔ 𝐶𝐷))

Theoremdff1o6 5416* A one-to-one onto function in terms of function values. (Contributed by NM, 29-Mar-2008.)
(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))

Theoremf1ocnvfv1 5417 The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (𝐹‘(𝐹𝐶)) = 𝐶)

Theoremf1ocnvfv2 5418 The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹‘(𝐹𝐶)) = 𝐶)

Theoremf1ocnvfv 5419 Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.)
((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = 𝐶))

Theoremf1ocnvfvb 5420 Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by NM, 20-May-2004.)
((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐶) = 𝐷 ↔ (𝐹𝐷) = 𝐶))

Theoremf1ocnvdm 5421 The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006.)
((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹𝐶) ∈ 𝐴)

Theoremf1ocnvfvrneq 5422 If the values of a one-to-one function for two arguments from the range of the function are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
((𝐹:𝐴1-1𝐵 ∧ (𝐶 ∈ ran 𝐹𝐷 ∈ ran 𝐹)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))

Theoremfcof1 5423 An application is injective if a retraction exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 11-Nov-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴1-1𝐵)

Theoremfcofo 5424 An application is surjective if a section exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 17-Nov-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) → 𝐹:𝐴onto𝐵)

Theoremcbvfo 5425* Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
((𝐹𝑥) = 𝑦 → (𝜑𝜓))       (𝐹:𝐴onto𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐵 𝜓))

Theoremcbvexfo 5426* Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.)
((𝐹𝑥) = 𝑦 → (𝜑𝜓))       (𝐹:𝐴onto𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐵 𝜓))

Theoremcocan1 5427 An injection is left-cancelable. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 21-Mar-2015.)
((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → ((𝐹𝐻) = (𝐹𝐾) ↔ 𝐻 = 𝐾))

Theoremcocan2 5428 A surjection is right-cancelable. (Contributed by FL, 21-Nov-2011.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → ((𝐻𝐹) = (𝐾𝐹) ↔ 𝐻 = 𝐾))

Theoremfcof1o 5429 Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015.)
(((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹:𝐴1-1-onto𝐵𝐹 = 𝐺))

Theoremfoeqcnvco 5430 Condition for function equality in terms of vanishing of the composition with the converse. EDITORIAL: Is there a relation-algebraic proof of this? (Contributed by Stefan O'Rear, 12-Feb-2015.)
((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐵)))

Theoremf1eqcocnv 5431 Condition for function equality in terms of vanishing of the composition with the inverse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐴)))

Theoremfliftrel 5432* 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑅)    &   ((𝜑𝑥𝑋) → 𝐵𝑆)       (𝜑𝐹 ⊆ (𝑅 × 𝑆))

Theoremfliftel 5433* Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑅)    &   ((𝜑𝑥𝑋) → 𝐵𝑆)       (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))

Theoremfliftel1 5434* Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑅)    &   ((𝜑𝑥𝑋) → 𝐵𝑆)       ((𝜑𝑥𝑋) → 𝐴𝐹𝐵)

Theoremfliftcnv 5435* Converse of the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑅)    &   ((𝜑𝑥𝑋) → 𝐵𝑆)       (𝜑𝐹 = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))

Theoremfliftfun 5436* The function 𝐹 is the unique function defined by 𝐹𝐴 = 𝐵, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑅)    &   ((𝜑𝑥𝑋) → 𝐵𝑆)    &   (𝑥 = 𝑦𝐴 = 𝐶)    &   (𝑥 = 𝑦𝐵 = 𝐷)       (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝑋𝑦𝑋 (𝐴 = 𝐶𝐵 = 𝐷)))

Theoremfliftfund 5437* The function 𝐹 is the unique function defined by 𝐹𝐴 = 𝐵, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑅)    &   ((𝜑𝑥𝑋) → 𝐵𝑆)    &   (𝑥 = 𝑦𝐴 = 𝐶)    &   (𝑥 = 𝑦𝐵 = 𝐷)    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝐴 = 𝐶)) → 𝐵 = 𝐷)       (𝜑 → Fun 𝐹)

Theoremfliftfuns 5438* The function 𝐹 is the unique function defined by 𝐹𝐴 = 𝐵, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑅)    &   ((𝜑𝑥𝑋) → 𝐵𝑆)       (𝜑 → (Fun 𝐹 ↔ ∀𝑦𝑋𝑧𝑋 (𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)))

Theoremfliftf 5439* The domain and range of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑅)    &   ((𝜑𝑥𝑋) → 𝐵𝑆)       (𝜑 → (Fun 𝐹𝐹:ran (𝑥𝑋𝐴)⟶𝑆))

Theoremfliftval 5440* The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑅)    &   ((𝜑𝑥𝑋) → 𝐵𝑆)    &   (𝑥 = 𝑌𝐴 = 𝐶)    &   (𝑥 = 𝑌𝐵 = 𝐷)    &   (𝜑 → Fun 𝐹)       ((𝜑𝑌𝑋) → (𝐹𝐶) = 𝐷)

Theoremisoeq1 5441 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
(𝐻 = 𝐺 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)))

Theoremisoeq2 5442 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
(𝑅 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑇, 𝑆 (𝐴, 𝐵)))

Theoremisoeq3 5443 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
(𝑆 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑇 (𝐴, 𝐵)))

Theoremisoeq4 5444 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
(𝐴 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐶, 𝐵)))

Theoremisoeq5 5445 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
(𝐵 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶)))

Theoremnfiso 5446 Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
𝑥𝐻    &   𝑥𝑅    &   𝑥𝑆    &   𝑥𝐴    &   𝑥𝐵       𝑥 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)

Theoremisof1o 5447 An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)

Theoremisorel 5448 An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.)
((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝑅𝐷 ↔ (𝐻𝐶)𝑆(𝐻𝐷)))

Theoremisoresbr 5449* A consequence of isomorphism on two relations for a function's restriction. (Contributed by Jim Kingdon, 11-Jan-2019.)
((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦)))

Theoremisoid 5450 Identity law for isomorphism. Proposition 6.30(1) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
( I ↾ 𝐴) Isom 𝑅, 𝑅 (𝐴, 𝐴)

Theoremisocnv 5451 Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))

Theoremisocnv2 5452 Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵))

Theoremisores2 5453 An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, (𝑆 ∩ (𝐵 × 𝐵))(𝐴, 𝐵))

Theoremisores1 5454 An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵))

Theoremisores3 5455 Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014.)
((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴𝑋 = (𝐻𝐾)) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋))

Theoremisotr 5456 Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) → (𝐺𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶))

Theoremisoini 5457 Isomorphisms preserve initial segments. Proposition 6.31(2) of [TakeutiZaring] p. 33. (Contributed by NM, 20-Apr-2004.)
((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝐷}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})))

Theoremisoini2 5458 Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.)
𝐶 = (𝐴 ∩ (𝑅 “ {𝑋}))    &   𝐷 = (𝐵 ∩ (𝑆 “ {(𝐻𝑋)}))       ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → (𝐻𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷))

Theoremisoselem 5459* Lemma for isose 5460. (Contributed by Mario Carneiro, 23-Jun-2015.)
(𝜑𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))    &   (𝜑 → (𝐻𝑥) ∈ V)       (𝜑 → (𝑅 Se 𝐴𝑆 Se 𝐵))

Theoremisose 5460 An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Se 𝐴𝑆 Se 𝐵))

Theoremisopolem 5461 Lemma for isopo 5462. (Contributed by Stefan O'Rear, 16-Nov-2014.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Po 𝐵𝑅 Po 𝐴))

Theoremisopo 5462 An isomorphism preserves partial ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Po 𝐴𝑆 Po 𝐵))

Theoremisosolem 5463 Lemma for isoso 5464. (Contributed by Stefan O'Rear, 16-Nov-2014.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵𝑅 Or 𝐴))

Theoremisoso 5464 An isomorphism preserves strict ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Or 𝐴𝑆 Or 𝐵))

Theoremf1oiso 5465* Any one-to-one onto function determines an isomorphism with an induced relation 𝑆. Proposition 6.33 of [TakeutiZaring] p. 34. (Contributed by NM, 30-Apr-2004.)
((𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))

Theoremf1oiso2 5466* Any one-to-one onto function determines an isomorphism with an induced relation 𝑆. (Contributed by Mario Carneiro, 9-Mar-2013.)
𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦))}       (𝐻:𝐴1-1-onto𝐵𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))

2.6.9  Restricted iota (description binder)

Syntaxcrio 5467 Extend class notation with restricted description binder.
class (𝑥𝐴 𝜑)

Definitiondf-riota 5468 Define restricted description binder. In case there is no unique 𝑥 such that (𝑥𝐴𝜑) holds, it evaluates to the empty set. See also comments for df-iota 4867. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
(𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))

Theoremriotaeqdv 5469* Formula-building deduction rule for iota. (Contributed by NM, 15-Sep-2011.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜓))

Theoremriotabidv 5470* Formula-building deduction rule for restricted iota. (Contributed by NM, 15-Sep-2011.)
(𝜑 → (𝜓𝜒))       (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))

Theoremriotaeqbidv 5471* Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜒))

Theoremriotaexg 5472* Restricted iota is a set. (Contributed by Jim Kingdon, 15-Jun-2020.)
(𝐴𝑉 → (𝑥𝐴 𝜓) ∈ V)

Theoremriotav 5473 An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.)
(𝑥 ∈ V 𝜑) = (℩𝑥𝜑)

Theoremriotauni 5474 Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.)
(∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = {𝑥𝐴𝜑})

Theoremnfriota1 5475* The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥(𝑥𝐴 𝜑)

Theoremnfriotadxy 5476* Deduction version of nfriota 5477. (Contributed by Jim Kingdon, 12-Jan-2019.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑥𝜓)    &   (𝜑𝑥𝐴)       (𝜑𝑥(𝑦𝐴 𝜓))

Theoremnfriota 5477* A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.)
𝑥𝜑    &   𝑥𝐴       𝑥(𝑦𝐴 𝜑)

Theoremcbvriota 5478* Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)

Theoremcbvriotav 5479* Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
(𝑥 = 𝑦 → (𝜑𝜓))       (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)

Theoremcsbriotag 5480* Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.)
(𝐴𝑉𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑))

Theoremriotacl2 5481 Membership law for "the unique element in 𝐴 such that 𝜑."

(Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)

(∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})

Theoremriotacl 5482* Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)
(∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)

Theoremriotasbc 5483 Substitution law for descriptions. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
(∃!𝑥𝐴 𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑)

Theoremriotabidva 5484* Equivalent wff's yield equal restricted class abstractions (deduction rule). (rabbidva 2548 analog.) (Contributed by NM, 17-Jan-2012.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))

Theoremriotabiia 5485 Equivalent wff's yield equal restricted iotas (inference rule). (rabbiia 2547 analog.) (Contributed by NM, 16-Jan-2012.)
(𝑥𝐴 → (𝜑𝜓))       (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓)

Theoremriota1 5486* Property of restricted iota. Compare iota1 4881. (Contributed by Mario Carneiro, 15-Oct-2016.)
(∃!𝑥𝐴 𝜑 → ((𝑥𝐴𝜑) ↔ (𝑥𝐴 𝜑) = 𝑥))

Theoremriota1a 5487 Property of iota. (Contributed by NM, 23-Aug-2011.)
((𝑥𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜑 ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))

Theoremriota2df 5488* A deduction version of riota2f 5489. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝜑    &   (𝜑𝑥𝐵)    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑𝐵𝐴)    &   ((𝜑𝑥 = 𝐵) → (𝜓𝜒))       ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → (𝜒 ↔ (𝑥𝐴 𝜓) = 𝐵))

Theoremriota2f 5489* This theorem shows a condition that allows us to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐵    &   𝑥𝜓    &   (𝑥 = 𝐵 → (𝜑𝜓))       ((𝐵𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜓 ↔ (𝑥𝐴 𝜑) = 𝐵))

Theoremriota2 5490* This theorem shows a condition that allows us to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.)
(𝑥 = 𝐵 → (𝜑𝜓))       ((𝐵𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜓 ↔ (𝑥𝐴 𝜑) = 𝐵))

Theoremriotaprop 5491* Properties of a restricted definite description operator. Todo (df-riota 5468 update): can some uses of riota2f 5489 be shortened with this? (Contributed by NM, 23-Nov-2013.)
𝑥𝜓    &   𝐵 = (𝑥𝐴 𝜑)    &   (𝑥 = 𝐵 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 → (𝐵𝐴𝜓))

Theoremriota5f 5492* A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
(𝜑𝑥𝐵)    &   (𝜑𝐵𝐴)    &   ((𝜑𝑥𝐴) → (𝜓𝑥 = 𝐵))       (𝜑 → (𝑥𝐴 𝜓) = 𝐵)

Theoremriota5 5493* A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.)
(𝜑𝐵𝐴)    &   ((𝜑𝑥𝐴) → (𝜓𝑥 = 𝐵))       (𝜑 → (𝑥𝐴 𝜓) = 𝐵)

Theoremriotass2 5494* Restriction of a unique element to a smaller class. (Contributed by NM, 21-Aug-2011.) (Revised by NM, 22-Mar-2013.)
(((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜓))

Theoremriotass 5495* Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.)
((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))

Theoremmoriotass 5496* Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.)
((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))

Theoremsnriota 5497 A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.)
(∃!𝑥𝐴 𝜑 → {𝑥𝐴𝜑} = {(𝑥𝐴 𝜑)})

Theoremeusvobj2 5498* Specify the same property in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
𝐵 ∈ V       (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵))

Theoremeusvobj1 5499* Specify the same object in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
𝐵 ∈ V       (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (℩𝑥𝑦𝐴 𝑥 = 𝐵) = (℩𝑥𝑦𝐴 𝑥 = 𝐵))

Theoremf1ofveu 5500* There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.)
((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → ∃!𝑥𝐴 (𝐹𝑥) = 𝐶)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10123
 Copyright terms: Public domain < Previous  Next >