HomeHome Intuitionistic Logic Explorer
Theorem List (p. 67 of 133)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6601-6700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremixpeq2dv 6601* Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
(𝜑𝐵 = 𝐶)       (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
 
Theoremcbvixp 6602* Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011.)
𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)       X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
 
Theoremcbvixpv 6603* Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝑥 = 𝑦𝐵 = 𝐶)       X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
 
Theoremnfixpxy 6604* Bound-variable hypothesis builder for indexed Cartesian product. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Jim Kingdon, 15-Feb-2023.)
𝑦𝐴    &   𝑦𝐵       𝑦X𝑥𝐴 𝐵
 
Theoremnfixp1 6605 The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥X𝑥𝐴 𝐵
 
Theoremixpprc 6606* A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain 𝐴, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.)
𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
 
Theoremixpf 6607* A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.)
(𝐹X𝑥𝐴 𝐵𝐹:𝐴 𝑥𝐴 𝐵)
 
Theoremuniixp 6608* The union of an infinite Cartesian product is included in a Cartesian product. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 24-Jun-2015.)
X𝑥𝐴 𝐵 ⊆ (𝐴 × 𝑥𝐴 𝐵)
 
Theoremixpexgg 6609* The existence of an infinite Cartesian product. 𝑥 is normally a free-variable parameter in 𝐵. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006.) (Revised by Jim Kingdon, 15-Feb-2023.)
((𝐴𝑊 ∧ ∀𝑥𝐴 𝐵𝑉) → X𝑥𝐴 𝐵 ∈ V)
 
Theoremixpin 6610* The intersection of two infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.)
X𝑥𝐴 (𝐵𝐶) = (X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
 
Theoremixpiinm 6611* The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.)
(∃𝑧 𝑧𝐵X𝑥𝐴 𝑦𝐵 𝐶 = 𝑦𝐵 X𝑥𝐴 𝐶)
 
Theoremixpintm 6612* The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.)
(∃𝑧 𝑧𝐵X𝑥𝐴 𝐵 = 𝑦𝐵 X𝑥𝐴 𝑦)
 
Theoremixp0x 6613 An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007.)
X𝑥 ∈ ∅ 𝐴 = {∅}
 
Theoremixpssmap2g 6614* An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg 6615 avoids ax-coll 4038. (Contributed by Mario Carneiro, 16-Nov-2014.)
( 𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
 
Theoremixpssmapg 6615* An infinite Cartesian product is a subset of set exponentiation. (Contributed by Jeff Madsen, 19-Jun-2011.)
(∀𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
 
Theorem0elixp 6616 Membership of the empty set in an infinite Cartesian product. (Contributed by Steve Rodriguez, 29-Sep-2006.)
∅ ∈ X𝑥 ∈ ∅ 𝐴
 
Theoremixpm 6617* If an infinite Cartesian product of a family 𝐵(𝑥) is inhabited, every 𝐵(𝑥) is inhabited. (Contributed by Mario Carneiro, 22-Jun-2016.) (Revised by Jim Kingdon, 16-Feb-2023.)
(∃𝑓 𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴𝑧 𝑧𝐵)
 
Theoremixp0 6618 The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim Kingdon, 16-Feb-2023.)
(∃𝑥𝐴 𝐵 = ∅ → X𝑥𝐴 𝐵 = ∅)
 
Theoremixpssmap 6619* An infinite Cartesian product is a subset of set exponentiation. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.)
𝐵 ∈ V       X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴)
 
Theoremresixp 6620* Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro, 31-May-2014.)
((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹𝐵) ∈ X𝑥𝐵 𝐶)
 
Theoremmptelixpg 6621* Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.)
(𝐼𝑉 → ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ ∀𝑥𝐼 𝐽𝐾))
 
Theoremelixpsn 6622* Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015.)
(𝐴𝑉 → (𝐹X𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑦𝐵 𝐹 = {⟨𝐴, 𝑦⟩}))
 
Theoremixpsnf1o 6623* A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))       (𝐼𝑉𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴)
 
Theoremmapsnf1o 6624* A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))       ((𝐴𝑉𝐼𝑊) → 𝐹:𝐴1-1-onto→(𝐴𝑚 {𝐼}))
 
2.6.27  Equinumerosity
 
Syntaxcen 6625 Extend class definition to include the equinumerosity relation ("approximately equals" symbol)
class
 
Syntaxcdom 6626 Extend class definition to include the dominance relation (curly less-than-or-equal)
class
 
Syntaxcfn 6627 Extend class definition to include the class of all finite sets.
class Fin
 
Definitiondf-en 6628* Define the equinumerosity relation. Definition of [Enderton] p. 129. We define to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6634. (Contributed by NM, 28-Mar-1998.)
≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
 
Definitiondf-dom 6629* Define the dominance relation. Compare Definition of [Enderton] p. 145. Typical textbook definitions are derived as brdom 6637 and domen 6638. (Contributed by NM, 28-Mar-1998.)
≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
 
Definitiondf-fin 6630* Define the (proper) class of all finite sets. Similar to Definition 10.29 of [TakeutiZaring] p. 91, whose "Fin(a)" corresponds to our "𝑎 ∈ Fin". This definition is meaningful whether or not we accept the Axiom of Infinity ax-inf2 13163. (Contributed by NM, 22-Aug-2008.)
Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥𝑦}
 
Theoremrelen 6631 Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.)
Rel ≈
 
Theoremreldom 6632 Dominance is a relation. (Contributed by NM, 28-Mar-1998.)
Rel ≼
 
Theoremencv 6633 If two classes are equinumerous, both classes are sets. (Contributed by AV, 21-Mar-2019.)
(𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
 
Theorembren 6634* Equinumerosity relation. (Contributed by NM, 15-Jun-1998.)
(𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
 
Theorembrdomg 6635* Dominance relation. (Contributed by NM, 15-Jun-1998.)
(𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
 
Theorembrdomi 6636* Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.)
(𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
 
Theorembrdom 6637* Dominance relation. (Contributed by NM, 15-Jun-1998.)
𝐵 ∈ V       (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
 
Theoremdomen 6638* Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.)
𝐵 ∈ V       (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
 
Theoremdomeng 6639* Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of [Enderton] p. 146. (Contributed by NM, 24-Apr-2004.)
(𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
 
Theoremctex 6640 A class dominated by ω is a set. See also ctfoex 6996 which says that a countable class is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.)
(𝐴 ≼ ω → 𝐴 ∈ V)
 
Theoremf1oen3g 6641 The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng 6644 does not require the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.) (Revised by Mario Carneiro, 10-Sep-2015.)
((𝐹𝑉𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
 
Theoremf1oen2g 6642 The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng 6644 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 10-Sep-2015.)
((𝐴𝑉𝐵𝑊𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
 
Theoremf1dom2g 6643 The domain of a one-to-one function is dominated by its codomain. This variation of f1domg 6645 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.)
((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐴𝐵)
 
Theoremf1oeng 6644 The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
((𝐴𝐶𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
 
Theoremf1domg 6645 The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004.)
(𝐵𝐶 → (𝐹:𝐴1-1𝐵𝐴𝐵))
 
Theoremf1oen 6646 The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
𝐴 ∈ V       (𝐹:𝐴1-1-onto𝐵𝐴𝐵)
 
Theoremf1dom 6647 The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 19-Jun-1998.)
𝐵 ∈ V       (𝐹:𝐴1-1𝐵𝐴𝐵)
 
Theoremisfi 6648* Express "𝐴 is finite." Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.)
(𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
 
Theoremenssdom 6649 Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.)
≈ ⊆ ≼
 
Theoremendom 6650 Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.)
(𝐴𝐵𝐴𝐵)
 
Theoremenrefg 6651 Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴𝑉𝐴𝐴)
 
Theoremenref 6652 Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.)
𝐴 ∈ V       𝐴𝐴
 
Theoremeqeng 6653 Equality implies equinumerosity. (Contributed by NM, 26-Oct-2003.)
(𝐴𝑉 → (𝐴 = 𝐵𝐴𝐵))
 
Theoremdomrefg 6654 Dominance is reflexive. (Contributed by NM, 18-Jun-1998.)
(𝐴𝑉𝐴𝐴)
 
Theoremen2d 6655* Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.)
(𝜑𝐴 ∈ V)    &   (𝜑𝐵 ∈ V)    &   (𝜑 → (𝑥𝐴𝐶 ∈ V))    &   (𝜑 → (𝑦𝐵𝐷 ∈ V))    &   (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))       (𝜑𝐴𝐵)
 
Theoremen3d 6656* Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.)
(𝜑𝐴 ∈ V)    &   (𝜑𝐵 ∈ V)    &   (𝜑 → (𝑥𝐴𝐶𝐵))    &   (𝜑 → (𝑦𝐵𝐷𝐴))    &   (𝜑 → ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶)))       (𝜑𝐴𝐵)
 
Theoremen2i 6657* Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑥𝐴𝐶 ∈ V)    &   (𝑦𝐵𝐷 ∈ V)    &   ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷))       𝐴𝐵
 
Theoremen3i 6658* Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 19-Jul-2004.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑥𝐴𝐶𝐵)    &   (𝑦𝐵𝐷𝐴)    &   ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶))       𝐴𝐵
 
Theoremdom2lem 6659* A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.)
(𝜑 → (𝑥𝐴𝐶𝐵))    &   (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))       (𝜑 → (𝑥𝐴𝐶):𝐴1-1𝐵)
 
Theoremdom2d 6660* A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 20-May-2013.)
(𝜑 → (𝑥𝐴𝐶𝐵))    &   (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))       (𝜑 → (𝐵𝑅𝐴𝐵))
 
Theoremdom3d 6661* A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.)
(𝜑 → (𝑥𝐴𝐶𝐵))    &   (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑𝐴𝐵)
 
Theoremdom2 6662* A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their distinct variable conditions. (Contributed by NM, 26-Oct-2003.)
(𝑥𝐴𝐶𝐵)    &   ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦))       (𝐵𝑉𝐴𝐵)
 
Theoremdom3 6663* A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their distinct variable conditions. (Contributed by Mario Carneiro, 20-May-2013.)
(𝑥𝐴𝐶𝐵)    &   ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦))       ((𝐴𝑉𝐵𝑊) → 𝐴𝐵)
 
Theoremidssen 6664 Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
I ⊆ ≈
 
Theoremssdomg 6665 A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
(𝐵𝑉 → (𝐴𝐵𝐴𝐵))
 
Theoremener 6666 Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
≈ Er V
 
Theoremensymb 6667 Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by Mario Carneiro, 26-Apr-2015.)
(𝐴𝐵𝐵𝐴)
 
Theoremensym 6668 Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴𝐵𝐵𝐴)
 
Theoremensymi 6669 Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.)
𝐴𝐵       𝐵𝐴
 
Theoremensymd 6670 Symmetry of equinumerosity. Deduction form of ensym 6668. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴𝐵)       (𝜑𝐵𝐴)
 
Theorementr 6671 Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.)
((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theoremdomtr 6672 Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theorementri 6673 A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
𝐴𝐵    &   𝐵𝐶       𝐴𝐶
 
Theorementr2i 6674 A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
𝐴𝐵    &   𝐵𝐶       𝐶𝐴
 
Theorementr3i 6675 A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
𝐴𝐵    &   𝐴𝐶       𝐵𝐶
 
Theorementr4i 6676 A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
𝐴𝐵    &   𝐶𝐵       𝐴𝐶
 
Theoremendomtr 6677 Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.)
((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theoremdomentr 6678 Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.)
((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theoremf1imaeng 6679 A one-to-one function's image under a subset of its domain is equinumerous to the subset. (Contributed by Mario Carneiro, 15-May-2015.)
((𝐹:𝐴1-1𝐵𝐶𝐴𝐶𝑉) → (𝐹𝐶) ≈ 𝐶)
 
Theoremf1imaen2g 6680 A one-to-one function's image under a subset of its domain is equinumerous to the subset. (This version of f1imaen 6681 does not need ax-setind 4447.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.)
(((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ≈ 𝐶)
 
Theoremf1imaen 6681 A one-to-one function's image under a subset of its domain is equinumerous to the subset. (Contributed by NM, 30-Sep-2004.)
𝐶 ∈ V       ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶) ≈ 𝐶)
 
Theoremen0 6682 The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.)
(𝐴 ≈ ∅ ↔ 𝐴 = ∅)
 
Theoremensn1 6683 A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.)
𝐴 ∈ V       {𝐴} ≈ 1o
 
Theoremensn1g 6684 A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.)
(𝐴𝑉 → {𝐴} ≈ 1o)
 
Theoremenpr1g 6685 {𝐴, 𝐴} has only one element. (Contributed by FL, 15-Feb-2010.)
(𝐴𝑉 → {𝐴, 𝐴} ≈ 1o)
 
Theoremen1 6686* A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.)
(𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
 
Theoremen1bg 6687 A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Jim Kingdon, 13-Apr-2020.)
(𝐴𝑉 → (𝐴 ≈ 1o𝐴 = { 𝐴}))
 
Theoremreuen1 6688* Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
(∃!𝑥𝐴 𝜑 ↔ {𝑥𝐴𝜑} ≈ 1o)
 
Theoremeuen1 6689 Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
(∃!𝑥𝜑 ↔ {𝑥𝜑} ≈ 1o)
 
Theoremeuen1b 6690* Two ways to express "𝐴 has a unique element". (Contributed by Mario Carneiro, 9-Apr-2015.)
(𝐴 ≈ 1o ↔ ∃!𝑥 𝑥𝐴)
 
Theoremen1uniel 6691 A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.)
(𝑆 ≈ 1o 𝑆𝑆)
 
Theorem2dom 6692* A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.)
(2o𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
 
Theoremfundmen 6693 A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 28-Jul-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
𝐹 ∈ V       (Fun 𝐹 → dom 𝐹𝐹)
 
Theoremfundmeng 6694 A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.)
((𝐹𝑉 ∧ Fun 𝐹) → dom 𝐹𝐹)
 
Theoremcnven 6695 A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014.)
((Rel 𝐴𝐴𝑉) → 𝐴𝐴)
 
Theoremcnvct 6696 If a set is dominated by ω, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.)
(𝐴 ≼ ω → 𝐴 ≼ ω)
 
Theoremfndmeng 6697 A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.)
((𝐹 Fn 𝐴𝐴𝐶) → 𝐴𝐹)
 
Theoremmapsnen 6698 Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝑚 {𝐵}) ≈ 𝐴
 
Theoremmap1 6699 Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.)
(𝐴𝑉 → (1o𝑚 𝐴) ≈ 1o)
 
Theoremen2sn 6700 Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.)
((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13239
  Copyright terms: Public domain < Previous  Next >