HomeHome Intuitionistic Logic Explorer
Theorem List (p. 67 of 106)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6601-6700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmulcanenq0ec 6601 Lemma for distributive law: cancellation of common factor. (Contributed by Jim Kingdon, 29-Nov-2019.)
((𝐴N𝐵 ∈ ω ∧ 𝐶N) → [⟨(𝐴 ·𝑜 𝐵), (𝐴 ·𝑜 𝐶)⟩] ~Q0 = [⟨𝐵, 𝐶⟩] ~Q0 )
 
Theoremnnnq0lem1 6602* Decomposing non-negative fractions into natural numbers. Lemma for addnnnq0 6605 and mulnnnq0 6606. (Contributed by Jim Kingdon, 23-Nov-2019.)
(((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → ((((𝑤 ∈ ω ∧ 𝑣N) ∧ (𝑠 ∈ ω ∧ 𝑓N)) ∧ ((𝑢 ∈ ω ∧ 𝑡N) ∧ (𝑔 ∈ ω ∧ N))) ∧ ((𝑤 ·𝑜 𝑓) = (𝑣 ·𝑜 𝑠) ∧ (𝑢 ·𝑜 ) = (𝑡 ·𝑜 𝑔))))
 
Theoremaddnq0mo 6603* There is at most one result from adding non-negative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.)
((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ))
 
Theoremmulnq0mo 6604* There is at most one result from multiplying non-negative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.)
((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ))
 
Theoremaddnnnq0 6605 Addition of non-negative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 22-Nov-2019.)
(((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 +Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 )
 
Theoremmulnnnq0 6606 Multiplication of non-negative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 19-Nov-2019.)
(((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 ·Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨(𝐴 ·𝑜 𝐶), (𝐵 ·𝑜 𝐷)⟩] ~Q0 )
 
Theoremaddclnq0 6607 Closure of addition on non-negative fractions. (Contributed by Jim Kingdon, 29-Nov-2019.)
((𝐴Q0𝐵Q0) → (𝐴 +Q0 𝐵) ∈ Q0)
 
Theoremmulclnq0 6608 Closure of multiplication on non-negative fractions. (Contributed by Jim Kingdon, 30-Nov-2019.)
((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) ∈ Q0)
 
Theoremnqpnq0nq 6609 A positive fraction plus a non-negative fraction is a positive fraction. (Contributed by Jim Kingdon, 30-Nov-2019.)
((𝐴Q𝐵Q0) → (𝐴 +Q0 𝐵) ∈ Q)
 
Theoremnqnq0a 6610 Addition of positive fractions is equal with +Q or +Q0. (Contributed by Jim Kingdon, 10-Nov-2019.)
((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵))
 
Theoremnqnq0m 6611 Multiplication of positive fractions is equal with ·Q or ·Q0. (Contributed by Jim Kingdon, 10-Nov-2019.)
((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))
 
Theoremnq0m0r 6612 Multiplication with zero for non-negative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
(𝐴Q0 → (0Q0 ·Q0 𝐴) = 0Q0)
 
Theoremnq0a0 6613 Addition with zero for non-negative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
(𝐴Q0 → (𝐴 +Q0 0Q0) = 𝐴)
 
Theoremnnanq0 6614 Addition of non-negative fractions with a common denominator. You can add two fractions with the same denominator by adding their numerators and keeping the same denominator. (Contributed by Jim Kingdon, 1-Dec-2019.)
((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → [⟨(𝑁 +𝑜 𝑀), 𝐴⟩] ~Q0 = ([⟨𝑁, 𝐴⟩] ~Q0 +Q0 [⟨𝑀, 𝐴⟩] ~Q0 ))
 
Theoremdistrnq0 6615 Multiplication of non-negative fractions is distributive. (Contributed by Jim Kingdon, 27-Nov-2019.)
((𝐴Q0𝐵Q0𝐶Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶)))
 
Theoremmulcomnq0 6616 Multiplication of non-negative fractions is commutative. (Contributed by Jim Kingdon, 27-Nov-2019.)
((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴))
 
Theoremaddassnq0lemcl 6617 A natural number closure law. Lemma for addassnq0 6618. (Contributed by Jim Kingdon, 3-Dec-2019.)
(((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → (((𝐼 ·𝑜 𝐿) +𝑜 (𝐽 ·𝑜 𝐾)) ∈ ω ∧ (𝐽 ·𝑜 𝐿) ∈ N))
 
Theoremaddassnq0 6618 Addition of non-negaative fractions is associative. (Contributed by Jim Kingdon, 29-Nov-2019.)
((𝐴Q0𝐵Q0𝐶Q0) → ((𝐴 +Q0 𝐵) +Q0 𝐶) = (𝐴 +Q0 (𝐵 +Q0 𝐶)))
 
Theoremdistnq0r 6619 Multiplication of non-negative fractions is distributive. Version of distrnq0 6615 with the multiplications commuted. (Contributed by Jim Kingdon, 29-Nov-2019.)
((𝐴Q0𝐵Q0𝐶Q0) → ((𝐵 +Q0 𝐶) ·Q0 𝐴) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴)))
 
Theoremaddpinq1 6620 Addition of one to the numerator of a fraction whose denominator is one. (Contributed by Jim Kingdon, 26-Apr-2020.)
(𝐴N → [⟨(𝐴 +N 1𝑜), 1𝑜⟩] ~Q = ([⟨𝐴, 1𝑜⟩] ~Q +Q 1Q))
 
Theoremnq02m 6621 Multiply a non-negative fraction by two. (Contributed by Jim Kingdon, 29-Nov-2019.)
(𝐴Q0 → ([⟨2𝑜, 1𝑜⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴))
 
Definitiondf-inp 6622* Define the set of positive reals. A "Dedekind cut" is a partition of the positive rational numbers into two classes such that all the numbers of one class are less than all the numbers of the other.

Here we follow the definition of a Dedekind cut from Definition 11.2.1 of [HoTT], p. (varies) with the one exception that we define it over positive rational numbers rather than all rational numbers.

A Dedekind cut is an ordered pair of a lower set 𝑙 and an upper set 𝑢 which is inhabited (𝑞Q𝑞𝑙 ∧ ∃𝑟Q𝑟𝑢), rounded (𝑞Q(𝑞𝑙 ↔ ∃𝑟Q(𝑞 <Q 𝑟𝑟𝑙)) and likewise for 𝑢), disjoint (𝑞Q¬ (𝑞𝑙𝑞𝑢)) and located (𝑞Q𝑟Q(𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))). See HoTT for more discussion of those terms and different ways of defining Dedekind cuts.

(Note: This is a "temporary" definition used in the construction of complex numbers, and is intended to be used only by the construction.) (Contributed by Jim Kingdon, 25-Sep-2019.)

P = {⟨𝑙, 𝑢⟩ ∣ (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))))}
 
Definitiondf-i1p 6623* Define the positive real constant 1. This is a "temporary" set used in the construction of complex numbers and is intended to be used only by the construction. (Contributed by Jim Kingdon, 25-Sep-2019.)
1P = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
 
Definitiondf-iplp 6624* Define addition on positive reals. From Section 11.2.1 of [HoTT], p. (varies). We write this definition to closely resemble the definition in HoTT although some of the conditions are redundant (for example, 𝑟 ∈ (1st𝑥) implies 𝑟Q) and can be simplified as shown at genpdf 6664.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 26-Sep-2019.)

+P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
 
Definitiondf-imp 6625* Define multiplication on positive reals. Here we use a simple definition which is similar to df-iplp 6624 or the definition of multiplication on positive reals in Metamath Proof Explorer. This is as opposed to the more complicated definition of multiplication given in Section 11.2.1 of [HoTT], p. (varies), which appears to be motivated by handling negative numbers or handling modified Dedekind cuts in which locatedness is omitted.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.)

·P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
 
Definitiondf-iltp 6626* Define ordering on positive reals. We define 𝑥<P 𝑦 if there is a positive fraction 𝑞 which is an element of the upper cut of 𝑥 and the lower cut of 𝑦. From the definition of < in Section 11.2.1 of [HoTT], p. (varies).

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.)

<P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))}
 
Theoremnpsspw 6627 Lemma for proving existence of reals. (Contributed by Jim Kingdon, 27-Sep-2019.)
P ⊆ (𝒫 Q × 𝒫 Q)
 
Theorempreqlu 6628 Two reals are equal if and only if their lower and upper cuts are. (Contributed by Jim Kingdon, 11-Dec-2019.)
((𝐴P𝐵P) → (𝐴 = 𝐵 ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
 
Theoremnpex 6629 The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.)
P ∈ V
 
Theoremelinp 6630* Membership in positive reals. (Contributed by Jim Kingdon, 27-Sep-2019.)
(⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))))
 
Theoremprop 6631 A positive real is an ordered pair of a lower cut and an upper cut. (Contributed by Jim Kingdon, 27-Sep-2019.)
(𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
 
Theoremelnp1st2nd 6632* Membership in positive reals, using 1st and 2nd to refer to the lower and upper cut. (Contributed by Jim Kingdon, 3-Oct-2019.)
(𝐴P ↔ ((𝐴 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐴))) ∧ ((∀𝑞Q (𝑞 ∈ (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐴) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐴)))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐴) ∨ 𝑟 ∈ (2nd𝐴))))))
 
Theoremprml 6633* A positive real's lower cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.)
(⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥Q 𝑥𝐿)
 
Theoremprmu 6634* A positive real's upper cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.)
(⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥Q 𝑥𝑈)
 
Theoremprssnql 6635 A positive real's lower cut is a subset of the positive fractions. It would presumably be possible to also prove 𝐿Q, but we only need 𝐿Q so far. (Contributed by Jim Kingdon, 28-Sep-2019.)
(⟨𝐿, 𝑈⟩ ∈ P𝐿Q)
 
Theoremprssnqu 6636 A positive real's upper cut is a subset of the positive fractions. It would presumably be possible to also prove 𝑈Q, but we only need 𝑈Q so far. (Contributed by Jim Kingdon, 28-Sep-2019.)
(⟨𝐿, 𝑈⟩ ∈ P𝑈Q)
 
Theoremelprnql 6637 An element of a positive real's lower cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → 𝐵Q)
 
Theoremelprnqu 6638 An element of a positive real's upper cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝑈) → 𝐵Q)
 
Theorem0npr 6639 The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.)
¬ ∅ ∈ P
 
Theoremprcdnql 6640 A lower cut is closed downwards under the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐶 <Q 𝐵𝐶𝐿))
 
Theoremprcunqu 6641 An upper cut is closed upwards under the positive fractions. (Contributed by Jim Kingdon, 25-Nov-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) → (𝐶 <Q 𝐵𝐵𝑈))
 
Theoremprubl 6642 A positive fraction not in a lower cut is an upper bound. (Contributed by Jim Kingdon, 29-Sep-2019.)
(((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶Q) → (¬ 𝐶𝐿𝐵 <Q 𝐶))
 
Theoremprltlu 6643 An element of a lower cut is less than an element of the corresponding upper cut. (Contributed by Jim Kingdon, 15-Oct-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → 𝐵 <Q 𝐶)
 
Theoremprnmaxl 6644* A lower cut has no largest member. (Contributed by Jim Kingdon, 29-Sep-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → ∃𝑥𝐿 𝐵 <Q 𝑥)
 
Theoremprnminu 6645* An upper cut has no smallest member. (Contributed by Jim Kingdon, 7-Nov-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝑈) → ∃𝑥𝑈 𝑥 <Q 𝐵)
 
Theoremprnmaddl 6646* A lower cut has no largest member. Addition version. (Contributed by Jim Kingdon, 29-Sep-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → ∃𝑥Q (𝐵 +Q 𝑥) ∈ 𝐿)
 
Theoremprloc 6647 A Dedekind cut is located. (Contributed by Jim Kingdon, 23-Oct-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (𝐴𝐿𝐵𝑈))
 
Theoremprdisj 6648 A Dedekind cut is disjoint. (Contributed by Jim Kingdon, 15-Dec-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐴Q) → ¬ (𝐴𝐿𝐴𝑈))
 
Theoremprarloclemlt 6649 Two possible ways of contracting an interval which straddles a Dedekind cut. Lemma for prarloc 6659. (Contributed by Jim Kingdon, 10-Nov-2019.)
(((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)))
 
Theoremprarloclemlo 6650* Contracting the lower side of an interval which straddles a Dedekind cut. Lemma for prarloc 6659. (Contributed by Jim Kingdon, 10-Nov-2019.)
(((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +Q ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝐿 → (((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
 
Theoremprarloclemup 6651 Contracting the upper side of an interval which straddles a Dedekind cut. Lemma for prarloc 6659. (Contributed by Jim Kingdon, 10-Nov-2019.)
(((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈 → (((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
 
Theoremprarloclem3step 6652* Induction step for prarloclem3 6653. (Contributed by Jim Kingdon, 9-Nov-2019.)
(((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
 
Theoremprarloclem3 6653* Contracting an interval which straddles a Dedekind cut. Lemma for prarloc 6659. (Contributed by Jim Kingdon, 27-Oct-2019.)
(((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
 
Theoremprarloclem4 6654* A slight rearrangement of prarloclem3 6653. Lemma for prarloc 6659. (Contributed by Jim Kingdon, 4-Nov-2019.)
(((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ 𝑃Q) → (∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
 
Theoremprarloclemn 6655* Subtracting two from a positive integer. Lemma for prarloc 6659. (Contributed by Jim Kingdon, 5-Nov-2019.)
((𝑁N ∧ 1𝑜 <N 𝑁) → ∃𝑥 ∈ ω (2𝑜 +𝑜 𝑥) = 𝑁)
 
Theoremprarloclem5 6656* A substitution of zero for 𝑦 and 𝑁 minus two for 𝑥. Lemma for prarloc 6659. (Contributed by Jim Kingdon, 4-Nov-2019.)
(((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1𝑜 <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
 
Theoremprarloclem 6657* A special case of Lemma 6.16 from [BauerTaylor], p. 32. Given evenly spaced rational numbers from 𝐴 to 𝐴 +Q (𝑁 ·Q 𝑃) (which are in the lower and upper cuts, respectively, of a real number), there are a pair of numbers, two positions apart in the even spacing, which straddle the cut. (Contributed by Jim Kingdon, 22-Oct-2019.)
(((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1𝑜 <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
 
Theoremprarloclemcalc 6658 Some calculations for prarloc 6659. (Contributed by Jim Kingdon, 26-Oct-2019.)
(((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 <Q (𝐴 +Q 𝑃))
 
Theoremprarloc 6659* A Dedekind cut is arithmetically located. Part of Proposition 11.15 of [BauerTaylor], p. 52, slightly modified. It states that given a tolerance 𝑃, there are elements of the lower and upper cut which are within that tolerance of each other.

Usually, proofs will be shorter if they use prarloc2 6660 instead. (Contributed by Jim Kingdon, 22-Oct-2019.)

((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃))
 
Theoremprarloc2 6660* A Dedekind cut is arithmetically located. This is a variation of prarloc 6659 which only constructs one (named) point and is therefore often easier to work with. It states that given a tolerance 𝑃, there are elements of the lower and upper cut which are exactly that tolerance from each other. (Contributed by Jim Kingdon, 26-Dec-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑎𝐿 (𝑎 +Q 𝑃) ∈ 𝑈)
 
Theoremltrelpr 6661 Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.)
<P ⊆ (P × P)
 
Theoremltdfpr 6662* More convenient form of df-iltp 6626. (Contributed by Jim Kingdon, 15-Dec-2019.)
((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
 
Theoremgenpdflem 6663* Simplification of upper or lower cut expression. Lemma for genpdf 6664. (Contributed by Jim Kingdon, 30-Sep-2019.)
((𝜑𝑟𝐴) → 𝑟Q)    &   ((𝜑𝑠𝐵) → 𝑠Q)       (𝜑 → {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟𝐴𝑠𝐵𝑞 = (𝑟𝐺𝑠))} = {𝑞Q ∣ ∃𝑟𝐴𝑠𝐵 𝑞 = (𝑟𝐺𝑠)})
 
Theoremgenpdf 6664* Simplified definition of addition or multiplication on positive reals. (Contributed by Jim Kingdon, 30-Sep-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑤) ∧ 𝑠 ∈ (1st𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑤) ∧ 𝑠 ∈ (2nd𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}⟩)       𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟 ∈ (1st𝑤)∃𝑠 ∈ (1st𝑣)𝑞 = (𝑟𝐺𝑠)}, {𝑞Q ∣ ∃𝑟 ∈ (2nd𝑤)∃𝑠 ∈ (2nd𝑣)𝑞 = (𝑟𝐺𝑠)}⟩)
 
Theoremgenipv 6665* Value of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingon, 3-Oct-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       ((𝐴P𝐵P) → (𝐴𝐹𝐵) = ⟨{𝑞Q ∣ ∃𝑟 ∈ (1st𝐴)∃𝑠 ∈ (1st𝐵)𝑞 = (𝑟𝐺𝑠)}, {𝑞Q ∣ ∃𝑟 ∈ (2nd𝐴)∃𝑠 ∈ (2nd𝐵)𝑞 = (𝑟𝐺𝑠)}⟩)
 
Theoremgenplt2i 6666* Operating on both sides of two inequalities, when the operation is consistent with <Q. (Contributed by Jim Kingdon, 6-Oct-2019.)
((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))    &   ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))       ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷))
 
Theoremgenpelxp 6667* Set containing the result of adding or multiplying positive reals. (Contributed by Jim Kingdon, 5-Dec-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)       ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ (𝒫 Q × 𝒫 Q))
 
Theoremgenpelvl 6668* Membership in lower cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 2-Oct-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       ((𝐴P𝐵P) → (𝐶 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝐶 = (𝑔𝐺)))
 
Theoremgenpelvu 6669* Membership in upper cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 15-Oct-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       ((𝐴P𝐵P) → (𝐶 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝐶 = (𝑔𝐺)))
 
Theoremgenpprecll 6670* Pre-closure law for general operation on lower cuts. (Contributed by Jim Kingdon, 2-Oct-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       ((𝐴P𝐵P) → ((𝐶 ∈ (1st𝐴) ∧ 𝐷 ∈ (1st𝐵)) → (𝐶𝐺𝐷) ∈ (1st ‘(𝐴𝐹𝐵))))
 
Theoremgenppreclu 6671* Pre-closure law for general operation on upper cuts. (Contributed by Jim Kingdon, 7-Nov-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       ((𝐴P𝐵P) → ((𝐶 ∈ (2nd𝐴) ∧ 𝐷 ∈ (2nd𝐵)) → (𝐶𝐺𝐷) ∈ (2nd ‘(𝐴𝐹𝐵))))
 
Theoremgenipdm 6672* Domain of general operation on positive reals. (Contributed by Jim Kingdon, 2-Oct-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       dom 𝐹 = (P × P)
 
Theoremgenpml 6673* The lower cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Oct-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
 
Theoremgenpmu 6674* The upper cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Dec-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))
 
Theoremgenpcdl 6675* Downward closure of an operation on positive reals. (Contributed by Jim Kingdon, 14-Oct-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   ((((𝐴P𝑔 ∈ (1st𝐴)) ∧ (𝐵P ∈ (1st𝐵))) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))       ((𝐴P𝐵P) → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))
 
Theoremgenpcuu 6676* Upward closure of an operation on positive reals. (Contributed by Jim Kingdon, 8-Nov-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   ((((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) ∧ 𝑥Q) → ((𝑔𝐺) <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))       ((𝐴P𝐵P) → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
 
Theoremgenprndl 6677* The lower cut produced by addition or multiplication on positive reals is rounded. (Contributed by Jim Kingdon, 7-Oct-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))    &   ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))    &   ((((𝐴P𝑔 ∈ (1st𝐴)) ∧ (𝐵P ∈ (1st𝐵))) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))       ((𝐴P𝐵P) → ∀𝑞Q (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵)))))
 
Theoremgenprndu 6678* The upper cut produced by addition or multiplication on positive reals is rounded. (Contributed by Jim Kingdon, 7-Oct-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))    &   ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))    &   ((((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) ∧ 𝑥Q) → ((𝑔𝐺) <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))       ((𝐴P𝐵P) → ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))))
 
Theoremgenpdisj 6679* The lower and upper cuts produced by addition or multiplication on positive reals are disjoint. (Contributed by Jim Kingdon, 15-Oct-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))    &   ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))       ((𝐴P𝐵P) → ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))))
 
Theoremgenpassl 6680* Associativity of lower cuts. Lemma for genpassg 6682. (Contributed by Jim Kingdon, 11-Dec-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   dom 𝐹 = (P × P)    &   ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)    &   ((𝑓Q𝑔QQ) → ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺)))       ((𝐴P𝐵P𝐶P) → (1st ‘((𝐴𝐹𝐵)𝐹𝐶)) = (1st ‘(𝐴𝐹(𝐵𝐹𝐶))))
 
Theoremgenpassu 6681* Associativity of upper cuts. Lemma for genpassg 6682. (Contributed by Jim Kingdon, 11-Dec-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   dom 𝐹 = (P × P)    &   ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)    &   ((𝑓Q𝑔QQ) → ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺)))       ((𝐴P𝐵P𝐶P) → (2nd ‘((𝐴𝐹𝐵)𝐹𝐶)) = (2nd ‘(𝐴𝐹(𝐵𝐹𝐶))))
 
Theoremgenpassg 6682* Associativity of an operation on reals. (Contributed by Jim Kingdon, 11-Dec-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   dom 𝐹 = (P × P)    &   ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)    &   ((𝑓Q𝑔QQ) → ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺)))       ((𝐴P𝐵P𝐶P) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
 
Theoremaddnqprllem 6683 Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
(((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) → (𝑋 <Q 𝑆 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))
 
Theoremaddnqprulem 6684 Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
(((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) → (𝑆 <Q 𝑋 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝑈))
 
Theoremaddnqprl 6685 Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.)
((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → 𝑋 ∈ (1st ‘(𝐴 +P 𝐵))))
 
Theoremaddnqpru 6686 Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.)
((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋𝑋 ∈ (2nd ‘(𝐴 +P 𝐵))))
 
Theoremaddlocprlemlt 6687 Lemma for addlocpr 6692. The 𝑄 <Q (𝐷 +Q 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.)
(𝜑𝐴P)    &   (𝜑𝐵P)    &   (𝜑𝑄 <Q 𝑅)    &   (𝜑𝑃Q)    &   (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)    &   (𝜑𝐷 ∈ (1st𝐴))    &   (𝜑𝑈 ∈ (2nd𝐴))    &   (𝜑𝑈 <Q (𝐷 +Q 𝑃))    &   (𝜑𝐸 ∈ (1st𝐵))    &   (𝜑𝑇 ∈ (2nd𝐵))    &   (𝜑𝑇 <Q (𝐸 +Q 𝑃))       (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 +P 𝐵))))
 
Theoremaddlocprlemeqgt 6688 Lemma for addlocpr 6692. This is a step used in both the 𝑄 = (𝐷 +Q 𝐸) and (𝐷 +Q 𝐸) <Q 𝑄 cases. (Contributed by Jim Kingdon, 7-Dec-2019.)
(𝜑𝐴P)    &   (𝜑𝐵P)    &   (𝜑𝑄 <Q 𝑅)    &   (𝜑𝑃Q)    &   (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)    &   (𝜑𝐷 ∈ (1st𝐴))    &   (𝜑𝑈 ∈ (2nd𝐴))    &   (𝜑𝑈 <Q (𝐷 +Q 𝑃))    &   (𝜑𝐸 ∈ (1st𝐵))    &   (𝜑𝑇 ∈ (2nd𝐵))    &   (𝜑𝑇 <Q (𝐸 +Q 𝑃))       (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
 
Theoremaddlocprlemeq 6689 Lemma for addlocpr 6692. The 𝑄 = (𝐷 +Q 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.)
(𝜑𝐴P)    &   (𝜑𝐵P)    &   (𝜑𝑄 <Q 𝑅)    &   (𝜑𝑃Q)    &   (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)    &   (𝜑𝐷 ∈ (1st𝐴))    &   (𝜑𝑈 ∈ (2nd𝐴))    &   (𝜑𝑈 <Q (𝐷 +Q 𝑃))    &   (𝜑𝐸 ∈ (1st𝐵))    &   (𝜑𝑇 ∈ (2nd𝐵))    &   (𝜑𝑇 <Q (𝐸 +Q 𝑃))       (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
 
Theoremaddlocprlemgt 6690 Lemma for addlocpr 6692. The (𝐷 +Q 𝐸) <Q 𝑄 case. (Contributed by Jim Kingdon, 6-Dec-2019.)
(𝜑𝐴P)    &   (𝜑𝐵P)    &   (𝜑𝑄 <Q 𝑅)    &   (𝜑𝑃Q)    &   (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)    &   (𝜑𝐷 ∈ (1st𝐴))    &   (𝜑𝑈 ∈ (2nd𝐴))    &   (𝜑𝑈 <Q (𝐷 +Q 𝑃))    &   (𝜑𝐸 ∈ (1st𝐵))    &   (𝜑𝑇 ∈ (2nd𝐵))    &   (𝜑𝑇 <Q (𝐸 +Q 𝑃))       (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
 
Theoremaddlocprlem 6691 Lemma for addlocpr 6692. The result, in deduction form. (Contributed by Jim Kingdon, 6-Dec-2019.)
(𝜑𝐴P)    &   (𝜑𝐵P)    &   (𝜑𝑄 <Q 𝑅)    &   (𝜑𝑃Q)    &   (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)    &   (𝜑𝐷 ∈ (1st𝐴))    &   (𝜑𝑈 ∈ (2nd𝐴))    &   (𝜑𝑈 <Q (𝐷 +Q 𝑃))    &   (𝜑𝐸 ∈ (1st𝐵))    &   (𝜑𝑇 ∈ (2nd𝐵))    &   (𝜑𝑇 <Q (𝐸 +Q 𝑃))       (𝜑 → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
 
Theoremaddlocpr 6692* Locatedness of addition on positive reals. Lemma 11.16 in [BauerTaylor], p. 53. The proof in BauerTaylor relies on signed rationals, so we replace it with another proof which applies prarloc 6659 to both 𝐴 and 𝐵, and uses nqtri3or 6552 rather than prloc 6647 to decide whether 𝑞 is too big to be in the lower cut of 𝐴 +P 𝐵 (and deduce that if it is, then 𝑟 must be in the upper cut). What the two proofs have in common is that they take the difference between 𝑞 and 𝑟 to determine how tight a range they need around the real numbers. (Contributed by Jim Kingdon, 5-Dec-2019.)
((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
 
Theoremaddclpr 6693 Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. Combination of Lemma 11.13 and Lemma 11.16 in [BauerTaylor], p. 53. (Contributed by NM, 13-Mar-1996.)
((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
 
Theoremplpvlu 6694* Value of addition on positive reals. (Contributed by Jim Kingdon, 8-Dec-2019.)
((𝐴P𝐵P) → (𝐴 +P 𝐵) = ⟨{𝑥Q ∣ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 +Q 𝑧)}, {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 +Q 𝑧)}⟩)
 
Theoremmpvlu 6695* Value of multiplication on positive reals. (Contributed by Jim Kingdon, 8-Dec-2019.)
((𝐴P𝐵P) → (𝐴 ·P 𝐵) = ⟨{𝑥Q ∣ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 ·Q 𝑧)}, {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 ·Q 𝑧)}⟩)
 
Theoremdmplp 6696 Domain of addition on positive reals. (Contributed by NM, 18-Nov-1995.)
dom +P = (P × P)
 
Theoremdmmp 6697 Domain of multiplication on positive reals. (Contributed by NM, 18-Nov-1995.)
dom ·P = (P × P)
 
Theoremnqprm 6698* A cut produced from a rational is inhabited. Lemma for nqprlu 6703. (Contributed by Jim Kingdon, 8-Dec-2019.)
(𝐴Q → (∃𝑞Q 𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ ∃𝑟Q 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
 
Theoremnqprrnd 6699* A cut produced from a rational is rounded. Lemma for nqprlu 6703. (Contributed by Jim Kingdon, 8-Dec-2019.)
(𝐴Q → (∀𝑞Q (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ {𝑥𝑥 <Q 𝐴})) ∧ ∀𝑟Q (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ {𝑥𝐴 <Q 𝑥}))))
 
Theoremnqprdisj 6700* A cut produced from a rational is disjoint. Lemma for nqprlu 6703. (Contributed by Jim Kingdon, 8-Dec-2019.)
(𝐴Q → ∀𝑞Q ¬ (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥𝐴 <Q 𝑥}))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10511
  Copyright terms: Public domain < Previous  Next >