HomeHome Intuitionistic Logic Explorer
Theorem List (p. 69 of 110)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6801-6900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremltnqex 6801 The class of rationals less than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.)
{𝑥𝑥 <Q 𝐴} ∈ V
 
Theoremgtnqex 6802 The class of rationals greater than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.)
{𝑥𝐴 <Q 𝑥} ∈ V
 
Theoremnqprl 6803* Comparing a fraction to a real can be done by whether it is an element of the lower cut, or by <P. (Contributed by Jim Kingdon, 8-Jul-2020.)
((𝐴Q𝐵P) → (𝐴 ∈ (1st𝐵) ↔ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵))
 
Theoremnqpru 6804* Comparing a fraction to a real can be done by whether it is an element of the upper cut, or by <P. (Contributed by Jim Kingdon, 29-Nov-2020.)
((𝐴Q𝐵P) → (𝐴 ∈ (2nd𝐵) ↔ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
 
Theoremnnprlu 6805* The canonical embedding of positive integers into the positive reals. (Contributed by Jim Kingdon, 23-Apr-2020.)
(𝐴N → ⟨{𝑙𝑙 <Q [⟨𝐴, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐴, 1𝑜⟩] ~Q <Q 𝑢}⟩ ∈ P)
 
Theorem1pr 6806 The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
1PP
 
Theorem1prl 6807 The lower cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.)
(1st ‘1P) = {𝑥𝑥 <Q 1Q}
 
Theorem1pru 6808 The upper cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.)
(2nd ‘1P) = {𝑥 ∣ 1Q <Q 𝑥}
 
Theoremaddnqprlemrl 6809* Lemma for addnqpr 6813. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
((𝐴Q𝐵Q) → (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩))
 
Theoremaddnqprlemru 6810* Lemma for addnqpr 6813. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
((𝐴Q𝐵Q) → (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩))
 
Theoremaddnqprlemfl 6811* Lemma for addnqpr 6813. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
((𝐴Q𝐵Q) → (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) ⊆ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
 
Theoremaddnqprlemfu 6812* Lemma for addnqpr 6813. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
((𝐴Q𝐵Q) → (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) ⊆ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
 
Theoremaddnqpr 6813* Addition of fractions embedded into positive reals. One can either add the fractions as fractions, or embed them into positive reals and add them as positive reals, and get the same result. (Contributed by Jim Kingdon, 19-Aug-2020.)
((𝐴Q𝐵Q) → ⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))
 
Theoremaddnqpr1 6814* Addition of one to a fraction embedded into a positive real. One can either add the fraction one to the fraction, or the positive real one to the positive real, and get the same result. Special case of addnqpr 6813. (Contributed by Jim Kingdon, 26-Apr-2020.)
(𝐴Q → ⟨{𝑙𝑙 <Q (𝐴 +Q 1Q)}, {𝑢 ∣ (𝐴 +Q 1Q) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P 1P))
 
Theoremappdivnq 6815* Approximate division for positive rationals. Proposition 12.7 of [BauerTaylor], p. 55 (a special case where 𝐴 and 𝐵 are positive, as well as 𝐶). Our proof is simpler than the one in BauerTaylor because we have reciprocals. (Contributed by Jim Kingdon, 8-Dec-2019.)
((𝐴 <Q 𝐵𝐶Q) → ∃𝑚Q (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵))
 
Theoremappdiv0nq 6816* Approximate division for positive rationals. This can be thought of as a variation of appdivnq 6815 in which 𝐴 is zero, although it can be stated and proved in terms of positive rationals alone, without zero as such. (Contributed by Jim Kingdon, 9-Dec-2019.)
((𝐵Q𝐶Q) → ∃𝑚Q (𝑚 ·Q 𝐶) <Q 𝐵)
 
Theoremprmuloclemcalc 6817 Calculations for prmuloc 6818. (Contributed by Jim Kingdon, 9-Dec-2019.)
(𝜑𝑅 <Q 𝑈)    &   (𝜑𝑈 <Q (𝐷 +Q 𝑃))    &   (𝜑 → (𝐴 +Q 𝑋) = 𝐵)    &   (𝜑 → (𝑃 ·Q 𝐵) <Q (𝑅 ·Q 𝑋))    &   (𝜑𝐴Q)    &   (𝜑𝐵Q)    &   (𝜑𝐷Q)    &   (𝜑𝑃Q)    &   (𝜑𝑋Q)       (𝜑 → (𝑈 ·Q 𝐴) <Q (𝐷 ·Q 𝐵))
 
Theoremprmuloc 6818* Positive reals are multiplicatively located. Lemma 12.8 of [BauerTaylor], p. 56. (Contributed by Jim Kingdon, 8-Dec-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → ∃𝑑Q𝑢Q (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
 
Theoremprmuloc2 6819* Positive reals are multiplicatively located. This is a variation of prmuloc 6818 which only constructs one (named) point and is therefore often easier to work with. It states that given a ratio 𝐵, there are elements of the lower and upper cut which have exactly that ratio between them. (Contributed by Jim Kingdon, 28-Dec-2019.)
((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈)
 
Theoremmulnqprl 6820 Lemma to prove downward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 ·Q 𝐻) → 𝑋 ∈ (1st ‘(𝐴 ·P 𝐵))))
 
Theoremmulnqpru 6821 Lemma to prove upward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) <Q 𝑋𝑋 ∈ (2nd ‘(𝐴 ·P 𝐵))))
 
Theoremmullocprlem 6822 Calculations for mullocpr 6823. (Contributed by Jim Kingdon, 10-Dec-2019.)
(𝜑 → (𝐴P𝐵P))    &   (𝜑 → (𝑈 ·Q 𝑄) <Q (𝐸 ·Q (𝐷 ·Q 𝑈)))    &   (𝜑 → (𝐸 ·Q (𝐷 ·Q 𝑈)) <Q (𝑇 ·Q (𝐷 ·Q 𝑈)))    &   (𝜑 → (𝑇 ·Q (𝐷 ·Q 𝑈)) <Q (𝐷 ·Q 𝑅))    &   (𝜑 → (𝑄Q𝑅Q))    &   (𝜑 → (𝐷Q𝑈Q))    &   (𝜑 → (𝐷 ∈ (1st𝐴) ∧ 𝑈 ∈ (2nd𝐴)))    &   (𝜑 → (𝐸Q𝑇Q))       (𝜑 → (𝑄 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 ·P 𝐵))))
 
Theoremmullocpr 6823* Locatedness of multiplication on positive reals. Lemma 12.9 in [BauerTaylor], p. 56 (but where both 𝐴 and 𝐵 are positive, not just 𝐴). (Contributed by Jim Kingdon, 8-Dec-2019.)
((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))
 
Theoremmulclpr 6824 Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.)
((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
 
Theoremmulnqprlemrl 6825* Lemma for mulnqpr 6829. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
((𝐴Q𝐵Q) → (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩))
 
Theoremmulnqprlemru 6826* Lemma for mulnqpr 6829. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
((𝐴Q𝐵Q) → (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩))
 
Theoremmulnqprlemfl 6827* Lemma for mulnqpr 6829. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
((𝐴Q𝐵Q) → (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) ⊆ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
 
Theoremmulnqprlemfu 6828* Lemma for mulnqpr 6829. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
((𝐴Q𝐵Q) → (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) ⊆ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
 
Theoremmulnqpr 6829* Multiplication of fractions embedded into positive reals. One can either multiply the fractions as fractions, or embed them into positive reals and multiply them as positive reals, and get the same result. (Contributed by Jim Kingdon, 18-Jul-2021.)
((𝐴Q𝐵Q) → ⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))
 
Theoremaddcomprg 6830 Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.)
((𝐴P𝐵P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))
 
Theoremaddassprg 6831 Addition of positive reals is associative. Proposition 9-3.5(i) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.)
((𝐴P𝐵P𝐶P) → ((𝐴 +P 𝐵) +P 𝐶) = (𝐴 +P (𝐵 +P 𝐶)))
 
Theoremmulcomprg 6832 Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.)
((𝐴P𝐵P) → (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴))
 
Theoremmulassprg 6833 Multiplication of positive reals is associative. Proposition 9-3.7(i) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.)
((𝐴P𝐵P𝐶P) → ((𝐴 ·P 𝐵) ·P 𝐶) = (𝐴 ·P (𝐵 ·P 𝐶)))
 
Theoremdistrlem1prl 6834 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
((𝐴P𝐵P𝐶P) → (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
 
Theoremdistrlem1pru 6835 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
((𝐴P𝐵P𝐶P) → (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
 
Theoremdistrlem4prl 6836* Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
(((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
 
Theoremdistrlem4pru 6837* Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
(((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
 
Theoremdistrlem5prl 6838 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
((𝐴P𝐵P𝐶P) → (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
 
Theoremdistrlem5pru 6839 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
((𝐴P𝐵P𝐶P) → (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
 
Theoremdistrprg 6840 Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 12-Dec-2019.)
((𝐴P𝐵P𝐶P) → (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
 
Theoremltprordil 6841 If a positive real is less than a second positive real, its lower cut is a subset of the second's lower cut. (Contributed by Jim Kingdon, 23-Dec-2019.)
(𝐴<P 𝐵 → (1st𝐴) ⊆ (1st𝐵))
 
Theorem1idprl 6842 Lemma for 1idpr 6844. (Contributed by Jim Kingdon, 13-Dec-2019.)
(𝐴P → (1st ‘(𝐴 ·P 1P)) = (1st𝐴))
 
Theorem1idpru 6843 Lemma for 1idpr 6844. (Contributed by Jim Kingdon, 13-Dec-2019.)
(𝐴P → (2nd ‘(𝐴 ·P 1P)) = (2nd𝐴))
 
Theorem1idpr 6844 1 is an identity element for positive real multiplication. Theorem 9-3.7(iv) of [Gleason] p. 124. (Contributed by NM, 2-Apr-1996.)
(𝐴P → (𝐴 ·P 1P) = 𝐴)
 
Theoremltnqpr 6845* We can order fractions via <Q or <P. (Contributed by Jim Kingdon, 19-Jun-2021.)
((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))
 
Theoremltnqpri 6846* We can order fractions via <Q or <P. (Contributed by Jim Kingdon, 8-Jan-2021.)
(𝐴 <Q 𝐵 → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)
 
Theoremltpopr 6847 Positive real 'less than' is a partial ordering. Remark ("< is transitive and irreflexive") preceding Proposition 11.2.3 of [HoTT], p. (varies). Lemma for ltsopr 6848. (Contributed by Jim Kingdon, 15-Dec-2019.)
<P Po P
 
Theoremltsopr 6848 Positive real 'less than' is a weak linear order (in the sense of df-iso 4060). Proposition 11.2.3 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Dec-2019.)
<P Or P
 
Theoremltaddpr 6849 The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
((𝐴P𝐵P) → 𝐴<P (𝐴 +P 𝐵))
 
Theoremltexprlemell 6850* Element in lower cut of the constructed difference. Lemma for ltexpri 6865. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝑞 ∈ (1st𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
 
Theoremltexprlemelu 6851* Element in upper cut of the constructed difference. Lemma for ltexpri 6865. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝑟 ∈ (2nd𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
 
Theoremltexprlemm 6852* Our constructed difference is inhabited. Lemma for ltexpri 6865. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (∃𝑞Q 𝑞 ∈ (1st𝐶) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐶)))
 
Theoremltexprlemopl 6853* The lower cut of our constructed difference is open. Lemma for ltexpri 6865. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       ((𝐴<P 𝐵𝑞Q𝑞 ∈ (1st𝐶)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)))
 
Theoremltexprlemlol 6854* The lower cut of our constructed difference is lower. Lemma for ltexpri 6865. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       ((𝐴<P 𝐵𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)) → 𝑞 ∈ (1st𝐶)))
 
Theoremltexprlemopu 6855* The upper cut of our constructed difference is open. Lemma for ltexpri 6865. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       ((𝐴<P 𝐵𝑟Q𝑟 ∈ (2nd𝐶)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))
 
Theoremltexprlemupu 6856* The upper cut of our constructed difference is upper. Lemma for ltexpri 6865. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       ((𝐴<P 𝐵𝑟Q) → (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)) → 𝑟 ∈ (2nd𝐶)))
 
Theoremltexprlemrnd 6857* Our constructed difference is rounded. Lemma for ltexpri 6865. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (∀𝑞Q (𝑞 ∈ (1st𝐶) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐶) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))))
 
Theoremltexprlemdisj 6858* Our constructed difference is disjoint. Lemma for ltexpri 6865. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → ∀𝑞Q ¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)))
 
Theoremltexprlemloc 6859* Our constructed difference is located. Lemma for ltexpri 6865. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶))))
 
Theoremltexprlempr 6860* Our constructed difference is a positive real. Lemma for ltexpri 6865. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵𝐶P)
 
Theoremltexprlemfl 6861* Lemma for ltexpri 6865. One directon of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (1st ‘(𝐴 +P 𝐶)) ⊆ (1st𝐵))
 
Theoremltexprlemrl 6862* Lemma for ltexpri 6865. Reverse directon of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (1st𝐵) ⊆ (1st ‘(𝐴 +P 𝐶)))
 
Theoremltexprlemfu 6863* Lemma for ltexpri 6865. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (2nd ‘(𝐴 +P 𝐶)) ⊆ (2nd𝐵))
 
Theoremltexprlemru 6864* Lemma for ltexpri 6865. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (2nd𝐵) ⊆ (2nd ‘(𝐴 +P 𝐶)))
 
Theoremltexpri 6865* Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
(𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
 
Theoremaddcanprleml 6866 Lemma for addcanprg 6868. (Contributed by Jim Kingdon, 25-Dec-2019.)
(((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st𝐵) ⊆ (1st𝐶))
 
Theoremaddcanprlemu 6867 Lemma for addcanprg 6868. (Contributed by Jim Kingdon, 25-Dec-2019.)
(((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐵) ⊆ (2nd𝐶))
 
Theoremaddcanprg 6868 Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by Jim Kingdon, 24-Dec-2019.)
((𝐴P𝐵P𝐶P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))
 
Theoremlteupri 6869* The difference from ltexpri 6865 is unique. (Contributed by Jim Kingdon, 7-Jul-2021.)
(𝐴<P 𝐵 → ∃!𝑥P (𝐴 +P 𝑥) = 𝐵)
 
Theoremltaprlem 6870 Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.)
(𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
 
Theoremltaprg 6871 Ordering property of addition. Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by Jim Kingdon, 26-Dec-2019.)
((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
 
Theoremprplnqu 6872* Membership in the upper cut of a sum of a positive real and a fraction. (Contributed by Jim Kingdon, 16-Jun-2021.)
(𝜑𝑋P)    &   (𝜑𝑄Q)    &   (𝜑𝐴 ∈ (2nd ‘(𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))       (𝜑 → ∃𝑦 ∈ (2nd𝑋)(𝑦 +Q 𝑄) = 𝐴)
 
Theoremaddextpr 6873 Strong extensionality of addition (ordering version). This is similar to addext 7777 but for positive reals and based on less-than rather than apartness. (Contributed by Jim Kingdon, 17-Feb-2020.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → (𝐴<P 𝐶𝐵<P 𝐷)))
 
Theoremrecexprlemell 6874* Membership in the lower cut of 𝐵. Lemma for recexpr 6890. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐶 ∈ (1st𝐵) ↔ ∃𝑦(𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
 
Theoremrecexprlemelu 6875* Membership in the upper cut of 𝐵. Lemma for recexpr 6890. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐶 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝐶 ∧ (*Q𝑦) ∈ (1st𝐴)))
 
Theoremrecexprlemm 6876* 𝐵 is inhabited. Lemma for recexpr 6890. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (∃𝑞Q 𝑞 ∈ (1st𝐵) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵)))
 
Theoremrecexprlemopl 6877* The lower cut of 𝐵 is open. Lemma for recexpr 6890. (Contributed by Jim Kingdon, 28-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       ((𝐴P𝑞Q𝑞 ∈ (1st𝐵)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
 
Theoremrecexprlemlol 6878* The lower cut of 𝐵 is lower. Lemma for recexpr 6890. (Contributed by Jim Kingdon, 28-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       ((𝐴P𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)) → 𝑞 ∈ (1st𝐵)))
 
Theoremrecexprlemopu 6879* The upper cut of 𝐵 is open. Lemma for recexpr 6890. (Contributed by Jim Kingdon, 28-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       ((𝐴P𝑟Q𝑟 ∈ (2nd𝐵)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
 
Theoremrecexprlemupu 6880* The upper cut of 𝐵 is upper. Lemma for recexpr 6890. (Contributed by Jim Kingdon, 28-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       ((𝐴P𝑟Q) → (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)) → 𝑟 ∈ (2nd𝐵)))
 
Theoremrecexprlemrnd 6881* 𝐵 is rounded. Lemma for recexpr 6890. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (∀𝑞Q (𝑞 ∈ (1st𝐵) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))))
 
Theoremrecexprlemdisj 6882* 𝐵 is disjoint. Lemma for recexpr 6890. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → ∀𝑞Q ¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)))
 
Theoremrecexprlemloc 6883* 𝐵 is located. Lemma for recexpr 6890. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵))))
 
Theoremrecexprlempr 6884* 𝐵 is a positive real. Lemma for recexpr 6890. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P𝐵P)
 
Theoremrecexprlem1ssl 6885* The lower cut of one is a subset of the lower cut of 𝐴 ·P 𝐵. Lemma for recexpr 6890. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (1st ‘1P) ⊆ (1st ‘(𝐴 ·P 𝐵)))
 
Theoremrecexprlem1ssu 6886* The upper cut of one is a subset of the upper cut of 𝐴 ·P 𝐵. Lemma for recexpr 6890. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (2nd ‘1P) ⊆ (2nd ‘(𝐴 ·P 𝐵)))
 
Theoremrecexprlemss1l 6887* The lower cut of 𝐴 ·P 𝐵 is a subset of the lower cut of one. Lemma for recexpr 6890. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (1st ‘(𝐴 ·P 𝐵)) ⊆ (1st ‘1P))
 
Theoremrecexprlemss1u 6888* The upper cut of 𝐴 ·P 𝐵 is a subset of the upper cut of one. Lemma for recexpr 6890. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (2nd ‘(𝐴 ·P 𝐵)) ⊆ (2nd ‘1P))
 
Theoremrecexprlemex 6889* 𝐵 is the reciprocal of 𝐴. Lemma for recexpr 6890. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (𝐴 ·P 𝐵) = 1P)
 
Theoremrecexpr 6890* The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
(𝐴P → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
 
Theoremaptiprleml 6891 Lemma for aptipr 6893. (Contributed by Jim Kingdon, 28-Jan-2020.)
((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) → (1st𝐴) ⊆ (1st𝐵))
 
Theoremaptiprlemu 6892 Lemma for aptipr 6893. (Contributed by Jim Kingdon, 28-Jan-2020.)
((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) → (2nd𝐵) ⊆ (2nd𝐴))
 
Theoremaptipr 6893 Apartness of positive reals is tight. (Contributed by Jim Kingdon, 28-Jan-2020.)
((𝐴P𝐵P ∧ ¬ (𝐴<P 𝐵𝐵<P 𝐴)) → 𝐴 = 𝐵)
 
Theoremltmprr 6894 Ordering property of multiplication. (Contributed by Jim Kingdon, 18-Feb-2020.)
((𝐴P𝐵P𝐶P) → ((𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵) → 𝐴<P 𝐵))
 
Theoremarchpr 6895* For any positive real, there is an integer that is greater than it. This is also known as the "archimedean property". The integer 𝑥 is embedded into the reals as described at nnprlu 6805. (Contributed by Jim Kingdon, 22-Apr-2020.)
(𝐴P → ∃𝑥N 𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩)
 
Theoremcaucvgprlemcanl 6896* Lemma for cauappcvgprlemladdrl 6909. Cancelling a term from both sides. (Contributed by Jim Kingdon, 15-Aug-2020.)
(𝜑𝐿P)    &   (𝜑𝑆Q)    &   (𝜑𝑅Q)    &   (𝜑𝑄Q)       (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ 𝑅 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
 
Theoremcauappcvgprlemm 6897* Lemma for cauappcvgpr 6914. The putative limit is inhabited. (Contributed by Jim Kingdon, 18-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
 
Theoremcauappcvgprlemopl 6898* Lemma for cauappcvgpr 6914. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
 
Theoremcauappcvgprlemlol 6899* Lemma for cauappcvgpr 6914. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 4-Aug-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
 
Theoremcauappcvgprlemopu 6900* Lemma for cauappcvgpr 6914. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       ((𝜑𝑟 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-10953
  Copyright terms: Public domain < Previous  Next >