HomeHome Intuitionistic Logic Explorer
Theorem List (p. 69 of 102)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6801-6900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcaucvgprprlemloc 6801* Lemma for caucvgprpr 6810. The putative limit is located. (Contributed by Jim Kingdon, 21-Dec-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝜑 → ∀𝑠Q𝑡Q (𝑠 <Q 𝑡 → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿))))
 
Theoremcaucvgprprlemcl 6802* Lemma for caucvgprpr 6810. The putative limit is a positive real. (Contributed by Jim Kingdon, 21-Nov-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝜑𝐿P)
 
Theoremcaucvgprprlemclphr 6803* Lemma for caucvgprpr 6810. The putative limit is a positive real. Like caucvgprprlemcl 6802 but without a distinct variable constraint between 𝜑 and 𝑟. (Contributed by Jim Kingdon, 19-Jun-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝜑𝐿P)
 
Theoremcaucvgprprlemexbt 6804* Lemma for caucvgprpr 6810. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 16-Jun-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩    &   (𝜑𝑄Q)    &   (𝜑𝑇P)    &   (𝜑 → (𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P 𝑇)       (𝜑 → ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P 𝑇)
 
Theoremcaucvgprprlemexb 6805* Lemma for caucvgprpr 6810. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 15-Jun-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩    &   (𝜑𝑄P)    &   (𝜑𝑅N)       (𝜑 → (((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑅) +P 𝑄) → ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑅) +P 𝑄)))
 
Theoremcaucvgprprlemaddq 6806* Lemma for caucvgprpr 6810. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 5-Jun-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩    &   (𝜑𝑋P)    &   (𝜑𝑄P)    &   (𝜑 → ∃𝑟N (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))       (𝜑𝑋<P (𝐿 +P 𝑄))
 
Theoremcaucvgprprlem1 6807* Lemma for caucvgprpr 6810. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩    &   (𝜑𝑄P)    &   (𝜑𝐽 <N 𝐾)    &   (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)       (𝜑 → (𝐹𝐾)<P (𝐿 +P 𝑄))
 
Theoremcaucvgprprlem2 6808* Lemma for caucvgprpr 6810. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩    &   (𝜑𝑄P)    &   (𝜑𝐽 <N 𝐾)    &   (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)       (𝜑𝐿<P ((𝐹𝐾) +P 𝑄))
 
Theoremcaucvgprprlemlim 6809* Lemma for caucvgprpr 6810. The putative limit is a limit. (Contributed by Jim Kingdon, 21-Nov-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝜑 → ∀𝑥P𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘)<P (𝐿 +P 𝑥) ∧ 𝐿<P ((𝐹𝑘) +P 𝑥))))
 
Theoremcaucvgprpr 6810* A Cauchy sequence of positive reals with a modulus of convergence converges to a positive real. This is basically Corollary 11.2.13 of [HoTT], p. (varies) (one key difference being that this is for positive reals rather than signed reals). Also, the HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis). We also specify that every term needs to be larger than a given value 𝐴, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This is similar to caucvgpr 6780 except that values of the sequence are positive reals rather than positive fractions. Reading that proof first (or cauappcvgpr 6760) might help in understanding this one, as they are slightly simpler but similarly structured. (Contributed by Jim Kingdon, 14-Nov-2020.)

(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))       (𝜑 → ∃𝑦P𝑥P𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘)<P (𝑦 +P 𝑥) ∧ 𝑦<P ((𝐹𝑘) +P 𝑥))))
 
Definitiondf-enr 6811* Define equivalence relation for signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.)
~R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))}
 
Definitiondf-nr 6812 Define class of signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.)
R = ((P × P) / ~R )
 
Definitiondf-plr 6813* Define addition on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.)
+R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑓)⟩] ~R ))}
 
Definitiondf-mr 6814* Define multiplication on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.)
·R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑓)), ((𝑤 ·P 𝑓) +P (𝑣 ·P 𝑢))⟩] ~R ))}
 
Definitiondf-ltr 6815* Define ordering relation on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.4 of [Gleason] p. 127. (Contributed by NM, 14-Feb-1996.)
<R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))}
 
Definitiondf-0r 6816 Define signed real constant 0. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.)
0R = [⟨1P, 1P⟩] ~R
 
Definitiondf-1r 6817 Define signed real constant 1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.)
1R = [⟨(1P +P 1P), 1P⟩] ~R
 
Definitiondf-m1r 6818 Define signed real constant -1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 9-Aug-1995.)
-1R = [⟨1P, (1P +P 1P)⟩] ~R
 
Theoremenrbreq 6819 Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (⟨𝐴, 𝐵⟩ ~R𝐶, 𝐷⟩ ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶)))
 
Theoremenrer 6820 The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
~R Er (P × P)
 
Theoremenreceq 6821 Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶)))
 
Theoremenrex 6822 The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.)
~R ∈ V
 
Theoremltrelsr 6823 Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.)
<R ⊆ (R × R)
 
Theoremaddcmpblnr 6824 Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.)
((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨(𝐴 +P 𝐹), (𝐵 +P 𝐺)⟩ ~R ⟨(𝐶 +P 𝑅), (𝐷 +P 𝑆)⟩))
 
Theoremmulcmpblnrlemg 6825 Lemma used in lemma showing compatibility of multiplication. (Contributed by Jim Kingdon, 1-Jan-2020.)
((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆))))))
 
Theoremmulcmpblnr 6826 Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.)
((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))⟩ ~R ⟨((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))⟩))
 
Theoremprsrlem1 6827* Decomposing signed reals into positive reals. Lemma for addsrpr 6830 and mulsrpr 6831. (Contributed by Jim Kingdon, 30-Dec-2019.)
(((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔))))
 
Theoremaddsrmo 6828* There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
 
Theoremmulsrmo 6829* There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ))
 
Theoremaddsrpr 6830 Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R +R [⟨𝐶, 𝐷⟩] ~R ) = [⟨(𝐴 +P 𝐶), (𝐵 +P 𝐷)⟩] ~R )
 
Theoremmulsrpr 6831 Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R ·R [⟨𝐶, 𝐷⟩] ~R ) = [⟨((𝐴 ·P 𝐶) +P (𝐵 ·P 𝐷)), ((𝐴 ·P 𝐷) +P (𝐵 ·P 𝐶))⟩] ~R )
 
Theoremltsrprg 6832 Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R <R [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶)))
 
Theoremgt0srpr 6833 Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.)
(0R <R [⟨𝐴, 𝐵⟩] ~R𝐵<P 𝐴)
 
Theorem0nsr 6834 The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.)
¬ ∅ ∈ R
 
Theorem0r 6835 The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995.)
0RR
 
Theorem1sr 6836 The constant 1R is a signed real. (Contributed by NM, 9-Aug-1995.)
1RR
 
Theoremm1r 6837 The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.)
-1RR
 
Theoremaddclsr 6838 Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.)
((𝐴R𝐵R) → (𝐴 +R 𝐵) ∈ R)
 
Theoremmulclsr 6839 Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.)
((𝐴R𝐵R) → (𝐴 ·R 𝐵) ∈ R)
 
Theoremaddcomsrg 6840 Addition of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
((𝐴R𝐵R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴))
 
Theoremaddasssrg 6841 Addition of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.)
((𝐴R𝐵R𝐶R) → ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶)))
 
Theoremmulcomsrg 6842 Multiplication of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
((𝐴R𝐵R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴))
 
Theoremmulasssrg 6843 Multiplication of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.)
((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶)))
 
Theoremdistrsrg 6844 Multiplication of signed reals is distributive. (Contributed by Jim Kingdon, 4-Jan-2020.)
((𝐴R𝐵R𝐶R) → (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶)))
 
Theoremm1p1sr 6845 Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.)
(-1R +R 1R) = 0R
 
Theoremm1m1sr 6846 Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.)
(-1R ·R -1R) = 1R
 
Theoremlttrsr 6847* Signed real 'less than' is a transitive relation. (Contributed by Jim Kingdon, 4-Jan-2019.)
((𝑓R𝑔RR) → ((𝑓 <R 𝑔𝑔 <R ) → 𝑓 <R ))
 
Theoremltposr 6848 Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.)
<R Po R
 
Theoremltsosr 6849 Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.)
<R Or R
 
Theorem0lt1sr 6850 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.)
0R <R 1R
 
Theorem1ne0sr 6851 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996.)
¬ 1R = 0R
 
Theorem0idsr 6852 The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.)
(𝐴R → (𝐴 +R 0R) = 𝐴)
 
Theorem1idsr 6853 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.)
(𝐴R → (𝐴 ·R 1R) = 𝐴)
 
Theorem00sr 6854 A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.)
(𝐴R → (𝐴 ·R 0R) = 0R)
 
Theoremltasrg 6855 Ordering property of addition. (Contributed by NM, 10-May-1996.)
((𝐴R𝐵R𝐶R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
 
Theorempn0sr 6856 A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.)
(𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
 
Theoremnegexsr 6857* Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.)
(𝐴R → ∃𝑥R (𝐴 +R 𝑥) = 0R)
 
Theoremrecexgt0sr 6858* The reciprocal of a positive signed real exists and is positive. (Contributed by Jim Kingdon, 6-Feb-2020.)
(0R <R 𝐴 → ∃𝑥R (0R <R 𝑥 ∧ (𝐴 ·R 𝑥) = 1R))
 
Theoremrecexsrlem 6859* The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.)
(0R <R 𝐴 → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
 
Theoremaddgt0sr 6860 The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.)
((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵))
 
Theoremltadd1sr 6861 Adding one to a signed real yields a larger signed real. (Contributed by Jim Kingdon, 7-Jul-2021.)
(𝐴R𝐴 <R (𝐴 +R 1R))
 
Theoremmulgt0sr 6862 The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.)
((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))
 
Theoremaptisr 6863 Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.)
((𝐴R𝐵R ∧ ¬ (𝐴 <R 𝐵𝐵 <R 𝐴)) → 𝐴 = 𝐵)
 
Theoremmulextsr1lem 6864 Lemma for mulextsr1 6865. (Contributed by Jim Kingdon, 17-Feb-2020.)
(((𝑋P𝑌P) ∧ (𝑍P𝑊P) ∧ (𝑈P𝑉P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) → ((𝑋 +P 𝑊)<P (𝑌 +P 𝑍) ∨ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋))))
 
Theoremmulextsr1 6865 Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.)
((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵𝐵 <R 𝐴)))
 
Theoremarchsr 6866* For any signed real, there is an integer that is greater than it. This is also known as the "archimedean property". The expression [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R is the embedding of the positive integer 𝑥 into the signed reals. (Contributed by Jim Kingdon, 23-Apr-2020.)
(𝐴R → ∃𝑥N 𝐴 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
 
Theoremsrpospr 6867* Mapping from a signed real greater than zero to a positive real. (Contributed by Jim Kingdon, 25-Jun-2021.)
((𝐴R ∧ 0R <R 𝐴) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
 
Theoremprsrcl 6868 Mapping from a positive real to a signed real. (Contributed by Jim Kingdon, 25-Jun-2021.)
(𝐴P → [⟨(𝐴 +P 1P), 1P⟩] ~RR)
 
Theoremprsrpos 6869 Mapping from a positive real to a signed real yields a result greater than zero. (Contributed by Jim Kingdon, 25-Jun-2021.)
(𝐴P → 0R <R [⟨(𝐴 +P 1P), 1P⟩] ~R )
 
Theoremprsradd 6870 Mapping from positive real addition to signed real addition. (Contributed by Jim Kingdon, 29-Jun-2021.)
((𝐴P𝐵P) → [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R = ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ))
 
Theoremprsrlt 6871 Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.)
((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ [⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R ))
 
Theoremprsrriota 6872* Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
((𝐴R ∧ 0R <R 𝐴) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴)
 
Theoremcaucvgsrlemcl 6873* Lemma for caucvgsr 6886. Terms of the sequence from caucvgsrlemgt1 6879 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))       ((𝜑𝐴N) → (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) ∈ P)
 
Theoremcaucvgsrlemasr 6874* Lemma for caucvgsr 6886. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.)
(𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))       (𝜑𝐴R)
 
Theoremcaucvgsrlemfv 6875* Lemma for caucvgsr 6886. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))    &   𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))       ((𝜑𝐴N) → [⟨((𝐺𝐴) +P 1P), 1P⟩] ~R = (𝐹𝐴))
 
Theoremcaucvgsrlemf 6876* Lemma for caucvgsr 6886. Defining the sequence in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))    &   𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))       (𝜑𝐺:NP)
 
Theoremcaucvgsrlemcau 6877* Lemma for caucvgsr 6886. Defining the Cauchy condition in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))    &   𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))       (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛)<P ((𝐺𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐺𝑘)<P ((𝐺𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
 
Theoremcaucvgsrlembound 6878* Lemma for caucvgsr 6886. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))    &   𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))       (𝜑 → ∀𝑚N 1P<P (𝐺𝑚))
 
Theoremcaucvgsrlemgt1 6879* Lemma for caucvgsr 6886. A Cauchy sequence whose terms are greater than one converges. (Contributed by Jim Kingdon, 22-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))       (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑖) +R 𝑥)))))
 
Theoremcaucvgsrlemoffval 6880* Lemma for caucvgsr 6886. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       ((𝜑𝐽N) → ((𝐺𝐽) +R 𝐴) = ((𝐹𝐽) +R 1R))
 
Theoremcaucvgsrlemofff 6881* Lemma for caucvgsr 6886. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       (𝜑𝐺:NR)
 
Theoremcaucvgsrlemoffcau 6882* Lemma for caucvgsr 6886. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
 
Theoremcaucvgsrlemoffgt1 6883* Lemma for caucvgsr 6886. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       (𝜑 → ∀𝑚N 1R <R (𝐺𝑚))
 
Theoremcaucvgsrlemoffres 6884* Lemma for caucvgsr 6886. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
 
Theoremcaucvgsrlembnd 6885* Lemma for caucvgsr 6886. A Cauchy sequence with a lower bound converges. (Contributed by Jim Kingdon, 19-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))       (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
 
Theoremcaucvgsr 6886* A Cauchy sequence of signed reals with a modulus of convergence converges to a signed real. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

This is similar to caucvgprpr 6810 but is for signed reals rather than positive reals.

Here is an outline of how we prove it:

1. Choose a lower bound for the sequence (see caucvgsrlembnd 6885).

2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 6881).

3. Since a signed real (element of R) which is greater than zero can be mapped to a positive real (element of P), perform that mapping on each element of the sequence and invoke caucvgprpr 6810 to get a limit (see caucvgsrlemgt1 6879).

4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 6879).

5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 6884). (Contributed by Jim Kingdon, 20-Jun-2021.)

(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))       (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
 
Syntaxcc 6887 Class of complex numbers.
class
 
Syntaxcr 6888 Class of real numbers.
class
 
Syntaxcc0 6889 Extend class notation to include the complex number 0.
class 0
 
Syntaxc1 6890 Extend class notation to include the complex number 1.
class 1
 
Syntaxci 6891 Extend class notation to include the complex number i.
class i
 
Syntaxcaddc 6892 Addition on complex numbers.
class +
 
Syntaxcltrr 6893 'Less than' predicate (defined over real subset of complex numbers).
class <
 
Syntaxcmul 6894 Multiplication on complex numbers. The token · is a center dot.
class ·
 
Definitiondf-c 6895 Define the set of complex numbers. (Contributed by NM, 22-Feb-1996.)
ℂ = (R × R)
 
Definitiondf-0 6896 Define the complex number 0. (Contributed by NM, 22-Feb-1996.)
0 = ⟨0R, 0R
 
Definitiondf-1 6897 Define the complex number 1. (Contributed by NM, 22-Feb-1996.)
1 = ⟨1R, 0R
 
Definitiondf-i 6898 Define the complex number i (the imaginary unit). (Contributed by NM, 22-Feb-1996.)
i = ⟨0R, 1R
 
Definitiondf-r 6899 Define the set of real numbers. (Contributed by NM, 22-Feb-1996.)
ℝ = (R × {0R})
 
Definitiondf-add 6900* Define addition over complex numbers. (Contributed by NM, 28-May-1995.)
+ = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10123
  Copyright terms: Public domain < Previous  Next >