HomeHome Intuitionistic Logic Explorer
Theorem List (p. 75 of 110)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7401-7500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnnncan2 7401 Cancellation law for subtraction. (Contributed by NM, 1-Oct-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶) − (𝐵𝐶)) = (𝐴𝐵))
 
Theoremnpncan3 7402 Cancellation law for subtraction. (Contributed by Scott Fenton, 23-Jun-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) + (𝐶𝐴)) = (𝐶𝐵))
 
Theorempnpcan 7403 Cancellation law for mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴 + 𝐶)) = (𝐵𝐶))
 
Theorempnpcan2 7404 Cancellation law for mixed addition and subtraction. (Contributed by Scott Fenton, 9-Jun-2006.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶) − (𝐵 + 𝐶)) = (𝐴𝐵))
 
Theorempnncan 7405 Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴𝐶)) = (𝐵 + 𝐶))
 
Theoremppncan 7406 Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐶𝐵)) = (𝐴 + 𝐶))
 
Theoremaddsub4 7407 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴𝐶) + (𝐵𝐷)))
 
Theoremsubadd4 7408 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 24-Aug-2006.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴𝐵) − (𝐶𝐷)) = ((𝐴 + 𝐷) − (𝐵 + 𝐶)))
 
Theoremsub4 7409 Rearrangement of 4 terms in a subtraction. (Contributed by NM, 23-Nov-2007.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴𝐵) − (𝐶𝐷)) = ((𝐴𝐶) − (𝐵𝐷)))
 
Theoremneg0 7410 Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.)
-0 = 0
 
Theoremnegid 7411 Addition of a number and its negative. (Contributed by NM, 14-Mar-2005.)
(𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
 
Theoremnegsub 7412 Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
 
Theoremsubneg 7413 Relationship between subtraction and negative. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵))
 
Theoremnegneg 7414 A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 12-Jan-2002.) (Revised by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℂ → --𝐴 = 𝐴)
 
Theoremneg11 7415 Negative is one-to-one. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = -𝐵𝐴 = 𝐵))
 
Theoremnegcon1 7416 Negative contraposition law. (Contributed by NM, 9-May-2004.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴))
 
Theoremnegcon2 7417 Negative contraposition law. (Contributed by NM, 14-Nov-2004.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = -𝐵𝐵 = -𝐴))
 
Theoremnegeq0 7418 A number is zero iff its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0))
 
Theoremsubcan 7419 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) = (𝐴𝐶) ↔ 𝐵 = 𝐶))
 
Theoremnegsubdi 7420 Distribution of negative over subtraction. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (-𝐴 + 𝐵))
 
Theoremnegdi 7421 Distribution of negative over addition. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 + -𝐵))
 
Theoremnegdi2 7422 Distribution of negative over addition. (Contributed by NM, 1-Jan-2006.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴𝐵))
 
Theoremnegsubdi2 7423 Distribution of negative over subtraction. (Contributed by NM, 4-Oct-1999.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (𝐵𝐴))
 
Theoremneg2sub 7424 Relationship between subtraction and negative. (Contributed by Paul Chapman, 8-Oct-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 − -𝐵) = (𝐵𝐴))
 
Theoremrenegcl 7425 Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.)
(𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
 
Theoremrenegcli 7426 Closure law for negative of reals. (Note: this inference proof style and the deduction theorem usage in renegcl 7425 is deprecated, but is retained for its demonstration value.) (Contributed by NM, 17-Jan-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
𝐴 ∈ ℝ       -𝐴 ∈ ℝ
 
Theoremresubcli 7427 Closure law for subtraction of reals. (Contributed by NM, 17-Jan-1997.) (Revised by Mario Carneiro, 27-May-2016.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴𝐵) ∈ ℝ
 
Theoremresubcl 7428 Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℝ)
 
Theoremnegreb 7429 The negative of a real is real. (Contributed by NM, 11-Aug-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
 
Theorempeano2cnm 7430 "Reverse" second Peano postulate analog for complex numbers: A complex number minus 1 is a complex number. (Contributed by Alexander van der Vekens, 18-Mar-2018.)
(𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ)
 
Theorempeano2rem 7431 "Reverse" second Peano postulate analog for reals. (Contributed by NM, 6-Feb-2007.)
(𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
 
Theoremnegcli 7432 Closure law for negative. (Contributed by NM, 26-Nov-1994.)
𝐴 ∈ ℂ       -𝐴 ∈ ℂ
 
Theoremnegidi 7433 Addition of a number and its negative. (Contributed by NM, 26-Nov-1994.)
𝐴 ∈ ℂ       (𝐴 + -𝐴) = 0
 
Theoremnegnegi 7434 A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 8-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
𝐴 ∈ ℂ       --𝐴 = 𝐴
 
Theoremsubidi 7435 Subtraction of a number from itself. (Contributed by NM, 26-Nov-1994.)
𝐴 ∈ ℂ       (𝐴𝐴) = 0
 
Theoremsubid1i 7436 Identity law for subtraction. (Contributed by NM, 29-May-1999.)
𝐴 ∈ ℂ       (𝐴 − 0) = 𝐴
 
Theoremnegne0bi 7437 A number is nonzero iff its negative is nonzero. (Contributed by NM, 10-Aug-1999.)
𝐴 ∈ ℂ       (𝐴 ≠ 0 ↔ -𝐴 ≠ 0)
 
Theoremnegrebi 7438 The negative of a real is real. (Contributed by NM, 11-Aug-1999.)
𝐴 ∈ ℂ       (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ)
 
Theoremnegne0i 7439 The negative of a nonzero number is nonzero. (Contributed by NM, 30-Jul-2004.)
𝐴 ∈ ℂ    &   𝐴 ≠ 0       -𝐴 ≠ 0
 
Theoremsubcli 7440 Closure law for subtraction. (Contributed by NM, 26-Nov-1994.) (Revised by Mario Carneiro, 21-Dec-2013.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐴𝐵) ∈ ℂ
 
Theorempncan3i 7441 Subtraction and addition of equals. (Contributed by NM, 26-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐴 + (𝐵𝐴)) = 𝐵
 
Theoremnegsubi 7442 Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 26-Nov-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐴 + -𝐵) = (𝐴𝐵)
 
Theoremsubnegi 7443 Relationship between subtraction and negative. (Contributed by NM, 1-Dec-2005.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐴 − -𝐵) = (𝐴 + 𝐵)
 
Theoremsubeq0i 7444 If the difference between two numbers is zero, they are equal. (Contributed by NM, 8-May-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵)
 
Theoremneg11i 7445 Negative is one-to-one. (Contributed by NM, 1-Aug-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (-𝐴 = -𝐵𝐴 = 𝐵)
 
Theoremnegcon1i 7446 Negative contraposition law. (Contributed by NM, 25-Aug-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴)
 
Theoremnegcon2i 7447 Negative contraposition law. (Contributed by NM, 25-Aug-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐴 = -𝐵𝐵 = -𝐴)
 
Theoremnegdii 7448 Distribution of negative over addition. (Contributed by NM, 28-Jul-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       -(𝐴 + 𝐵) = (-𝐴 + -𝐵)
 
Theoremnegsubdii 7449 Distribution of negative over subtraction. (Contributed by NM, 6-Aug-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       -(𝐴𝐵) = (-𝐴 + 𝐵)
 
Theoremnegsubdi2i 7450 Distribution of negative over subtraction. (Contributed by NM, 1-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       -(𝐴𝐵) = (𝐵𝐴)
 
Theoremsubaddi 7451 Relationship between subtraction and addition. (Contributed by NM, 26-Nov-1994.) (Revised by Mario Carneiro, 21-Dec-2013.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)
 
Theoremsubadd2i 7452 Relationship between subtraction and addition. (Contributed by NM, 15-Dec-2006.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴)
 
Theoremsubaddrii 7453 Relationship between subtraction and addition. (Contributed by NM, 16-Dec-2006.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   (𝐵 + 𝐶) = 𝐴       (𝐴𝐵) = 𝐶
 
Theoremsubsub23i 7454 Swap subtrahend and result of subtraction. (Contributed by NM, 7-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴𝐵) = 𝐶 ↔ (𝐴𝐶) = 𝐵)
 
Theoremaddsubassi 7455 Associative-type law for subtraction and addition. (Contributed by NM, 16-Sep-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵𝐶))
 
Theoremaddsubi 7456 Law for subtraction and addition. (Contributed by NM, 6-Aug-2003.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴 + 𝐵) − 𝐶) = ((𝐴𝐶) + 𝐵)
 
Theoremsubcani 7457 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴𝐵) = (𝐴𝐶) ↔ 𝐵 = 𝐶)
 
Theoremsubcan2i 7458 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴𝐶) = (𝐵𝐶) ↔ 𝐴 = 𝐵)
 
Theorempnncani 7459 Cancellation law for mixed addition and subtraction. (Contributed by NM, 14-Jan-2006.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴 + 𝐵) − (𝐴𝐶)) = (𝐵 + 𝐶)
 
Theoremaddsub4i 7460 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 17-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ       ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴𝐶) + (𝐵𝐷))
 
Theorem0reALT 7461 Alternate proof of 0re 7170. (Contributed by NM, 19-Feb-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
0 ∈ ℝ
 
Theoremnegcld 7462 Closure law for negative. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → -𝐴 ∈ ℂ)
 
Theoremsubidd 7463 Subtraction of a number from itself. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴𝐴) = 0)
 
Theoremsubid1d 7464 Identity law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 − 0) = 𝐴)
 
Theoremnegidd 7465 Addition of a number and its negative. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 + -𝐴) = 0)
 
Theoremnegnegd 7466 A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → --𝐴 = 𝐴)
 
Theoremnegeq0d 7467 A number is zero iff its negative is zero. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 = 0 ↔ -𝐴 = 0))
 
Theoremnegne0bd 7468 A number is nonzero iff its negative is nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 ≠ 0 ↔ -𝐴 ≠ 0))
 
Theoremnegcon1d 7469 Contraposition law for unary minus. Deduction form of negcon1 7416. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴))
 
Theoremnegcon1ad 7470 Contraposition law for unary minus. One-way deduction form of negcon1 7416. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → -𝐴 = 𝐵)       (𝜑 → -𝐵 = 𝐴)
 
Theoremneg11ad 7471 The negatives of two complex numbers are equal iff they are equal. Deduction form of neg11 7415. Generalization of neg11d 7487. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (-𝐴 = -𝐵𝐴 = 𝐵))
 
Theoremnegned 7472 If two complex numbers are unequal, so are their negatives. Contrapositive of neg11d 7487. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴𝐵)       (𝜑 → -𝐴 ≠ -𝐵)
 
Theoremnegne0d 7473 The negative of a nonzero number is nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → -𝐴 ≠ 0)
 
Theoremnegrebd 7474 The negative of a real is real. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → -𝐴 ∈ ℝ)       (𝜑𝐴 ∈ ℝ)
 
Theoremsubcld 7475 Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴𝐵) ∈ ℂ)
 
Theorempncand 7476 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
 
Theorempncan2d 7477 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) − 𝐴) = 𝐵)
 
Theorempncan3d 7478 Subtraction and addition of equals. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 + (𝐵𝐴)) = 𝐵)
 
Theoremnpcand 7479 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((𝐴𝐵) + 𝐵) = 𝐴)
 
Theoremnncand 7480 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 − (𝐴𝐵)) = 𝐵)
 
Theoremnegsubd 7481 Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 + -𝐵) = (𝐴𝐵))
 
Theoremsubnegd 7482 Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵))
 
Theoremsubeq0d 7483 If the difference between two numbers is zero, they are equal. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → (𝐴𝐵) = 0)       (𝜑𝐴 = 𝐵)
 
Theoremsubne0d 7484 Two unequal numbers have nonzero difference. See also subap0d 7796 which is the same thing for apartness rather than negated equality. (Contributed by Mario Carneiro, 1-Jan-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴𝐵) ≠ 0)
 
Theoremsubeq0ad 7485 The difference of two complex numbers is zero iff they are equal. Deduction form of subeq0 7390. Generalization of subeq0d 7483. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
 
Theoremsubne0ad 7486 If the difference of two complex numbers is nonzero, they are unequal. Converse of subne0d 7484. Contrapositive of subeq0bd 7539. (Contributed by David Moews, 28-Feb-2017.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → (𝐴𝐵) ≠ 0)       (𝜑𝐴𝐵)
 
Theoremneg11d 7487 If the difference between two numbers is zero, they are equal. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → -𝐴 = -𝐵)       (𝜑𝐴 = 𝐵)
 
Theoremnegdid 7488 Distribution of negative over addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → -(𝐴 + 𝐵) = (-𝐴 + -𝐵))
 
Theoremnegdi2d 7489 Distribution of negative over addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → -(𝐴 + 𝐵) = (-𝐴𝐵))
 
Theoremnegsubdid 7490 Distribution of negative over subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → -(𝐴𝐵) = (-𝐴 + 𝐵))
 
Theoremnegsubdi2d 7491 Distribution of negative over subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → -(𝐴𝐵) = (𝐵𝐴))
 
Theoremneg2subd 7492 Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (-𝐴 − -𝐵) = (𝐵𝐴))
 
Theoremsubaddd 7493 Relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))
 
Theoremsubadd2d 7494 Relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴))
 
Theoremaddsubassd 7495 Associative-type law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵𝐶)))
 
Theoremaddsubd 7496 Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) − 𝐶) = ((𝐴𝐶) + 𝐵))
 
Theoremsubadd23d 7497 Commutative/associative law for addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴𝐵) + 𝐶) = (𝐴 + (𝐶𝐵)))
 
Theoremaddsub12d 7498 Commutative/associative law for addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴 + (𝐵𝐶)) = (𝐵 + (𝐴𝐶)))
 
Theoremnpncand 7499 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴𝐵) + (𝐵𝐶)) = (𝐴𝐶))
 
Theoremnppcand 7500 Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (((𝐴𝐵) + 𝐶) + 𝐵) = (𝐴 + 𝐶))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-10938
  Copyright terms: Public domain < Previous  Next >