![]() |
Intuitionistic Logic Explorer Theorem List (p. 79 of 111) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | le2subd 7801 | Subtracting both sides of two 'less than or equal to' relations. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐵 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 − 𝐷) ≤ (𝐶 − 𝐵)) | ||
Theorem | ltleaddd 7802 | Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶) & ⊢ (𝜑 → 𝐵 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) | ||
Theorem | leltaddd 7803 | Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) | ||
Theorem | lt2addd 7804 | Adding both side of two inequalities. Theorem I.25 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶) & ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) | ||
Theorem | lt2subd 7805 | Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶) & ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 − 𝐷) < (𝐶 − 𝐵)) | ||
Theorem | possumd 7806 | Condition for a positive sum. (Contributed by Scott Fenton, 16-Dec-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (0 < (𝐴 + 𝐵) ↔ -𝐵 < 𝐴)) | ||
Theorem | sublt0d 7807 | When a subtraction gives a negative result. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) < 0 ↔ 𝐴 < 𝐵)) | ||
Theorem | ltaddsublt 7808 | Addition and subtraction on one side of 'less than'. (Contributed by AV, 24-Nov-2018.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ ((𝐴 + 𝐵) − 𝐶) < 𝐴)) | ||
Theorem | 1le1 7809 | 1 ≤ 1. Common special case. (Contributed by David A. Wheeler, 16-Jul-2016.) |
⊢ 1 ≤ 1 | ||
Theorem | gt0add 7810 | A positive sum must have a positive addend. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 26-Jan-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → (0 < 𝐴 ∨ 0 < 𝐵)) | ||
Syntax | creap 7811 | Class of real apartness relation. |
class #ℝ | ||
Definition | df-reap 7812* | Define real apartness. Definition in Section 11.2.1 of [HoTT], p. (varies). Although #ℝ is an apartness relation on the reals (see df-ap 7819 for more discussion of apartness relations), for our purposes it is just a stepping stone to defining # which is an apartness relation on complex numbers. On the reals, #ℝ and # agree (apreap 7824). (Contributed by Jim Kingdon, 26-Jan-2020.) |
⊢ #ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥))} | ||
Theorem | reapval 7813 | Real apartness in terms of classes. Beyond the development of # itself, proofs should use reaplt 7825 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 29-Jan-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 #ℝ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | ||
Theorem | reapirr 7814 | Real apartness is irreflexive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). Beyond the development of # itself, proofs should use apirr 7842 instead. (Contributed by Jim Kingdon, 26-Jan-2020.) |
⊢ (𝐴 ∈ ℝ → ¬ 𝐴 #ℝ 𝐴) | ||
Theorem | recexre 7815* | Existence of reciprocal of real number. (Contributed by Jim Kingdon, 29-Jan-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 #ℝ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | ||
Theorem | reapti 7816 | Real apartness is tight. Beyond the development of apartness itself, proofs should use apti 7859. (Contributed by Jim Kingdon, 30-Jan-2020.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 #ℝ 𝐵)) | ||
Theorem | recexgt0 7817* | Existence of reciprocal of positive real number. (Contributed by Jim Kingdon, 6-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1)) | ||
Syntax | cap 7818 | Class of complex apartness relation. |
class # | ||
Definition | df-ap 7819* |
Define complex apartness. Definition 6.1 of [Geuvers], p. 17.
Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 7904 which says that a number apart from zero has a reciprocal). The defining characteristics of an apartness are irreflexivity (apirr 7842), symmetry (apsym 7843), and cotransitivity (apcotr 7844). Apartness implies negated equality, as seen at apne 7860, and the converse would also follow if we assumed excluded middle. In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 7859). (Contributed by Jim Kingdon, 26-Jan-2020.) |
⊢ # = {〈𝑥, 𝑦〉 ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢))} | ||
Theorem | ixi 7820 | i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ (i · i) = -1 | ||
Theorem | inelr 7821 | The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.) |
⊢ ¬ i ∈ ℝ | ||
Theorem | rimul 7822 | A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0) | ||
Theorem | rereim 7823 | Decomposition of a real number into real part (itself) and imaginary part (zero). (Contributed by Jim Kingdon, 30-Jan-2020.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (𝐵 = 𝐴 ∧ 𝐶 = 0)) | ||
Theorem | apreap 7824 | Complex apartness and real apartness agree on the real numbers. (Contributed by Jim Kingdon, 31-Jan-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ 𝐴 #ℝ 𝐵)) | ||
Theorem | reaplt 7825 | Real apartness in terms of less than. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 1-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | ||
Theorem | reapltxor 7826 | Real apartness in terms of less than (exclusive-or version). (Contributed by Jim Kingdon, 23-Mar-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ⊻ 𝐵 < 𝐴))) | ||
Theorem | 1ap0 7827 | One is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.) |
⊢ 1 # 0 | ||
Theorem | ltmul1a 7828 | Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 15-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ 𝐴 < 𝐵) → (𝐴 · 𝐶) < (𝐵 · 𝐶)) | ||
Theorem | ltmul1 7829 | Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶))) | ||
Theorem | lemul1 7830 | Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 21-Feb-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) | ||
Theorem | reapmul1lem 7831 | Lemma for reapmul1 7832. (Contributed by Jim Kingdon, 8-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) | ||
Theorem | reapmul1 7832 | Multiplication of both sides of real apartness by a real number apart from zero. Special case of apmul1 8013. (Contributed by Jim Kingdon, 8-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) | ||
Theorem | reapadd1 7833 | Real addition respects apartness. (Contributed by Jim Kingdon, 13-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶))) | ||
Theorem | reapneg 7834 | Real negation respects apartness. (Contributed by Jim Kingdon, 13-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵)) | ||
Theorem | reapcotr 7835 | Real apartness is cotransitive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → (𝐴 # 𝐶 ∨ 𝐵 # 𝐶))) | ||
Theorem | remulext1 7836 | Left extensionality for multiplication. (Contributed by Jim Kingdon, 19-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) → 𝐴 # 𝐵)) | ||
Theorem | remulext2 7837 | Right extensionality for real multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 · 𝐴) # (𝐶 · 𝐵) → 𝐴 # 𝐵)) | ||
Theorem | apsqgt0 7838 | The square of a real number apart from zero is positive. (Contributed by Jim Kingdon, 7-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴 · 𝐴)) | ||
Theorem | cru 7839 | The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | apreim 7840 | Complex apartness in terms of real and imaginary parts. (Contributed by Jim Kingdon, 12-Feb-2020.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) # (𝐶 + (i · 𝐷)) ↔ (𝐴 # 𝐶 ∨ 𝐵 # 𝐷))) | ||
Theorem | mulreim 7841 | Complex multiplication in terms of real and imaginary parts. (Contributed by Jim Kingdon, 23-Feb-2020.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = (((𝐴 · 𝐶) + -(𝐵 · 𝐷)) + (i · ((𝐶 · 𝐵) + (𝐷 · 𝐴))))) | ||
Theorem | apirr 7842 | Apartness is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2020.) |
⊢ (𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴) | ||
Theorem | apsym 7843 | Apartness is symmetric. This theorem for real numbers is part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ 𝐵 # 𝐴)) | ||
Theorem | apcotr 7844 | Apartness is cotransitive. (Contributed by Jim Kingdon, 16-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 → (𝐴 # 𝐶 ∨ 𝐵 # 𝐶))) | ||
Theorem | apadd1 7845 | Addition respects apartness. Analogue of addcan 7425 for apartness. (Contributed by Jim Kingdon, 13-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶))) | ||
Theorem | apadd2 7846 | Addition respects apartness. (Contributed by Jim Kingdon, 16-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐶 + 𝐴) # (𝐶 + 𝐵))) | ||
Theorem | addext 7847 | Strong extensionality for addition. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5573. For us, it is proved a different way. (Contributed by Jim Kingdon, 15-Feb-2020.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → (𝐴 # 𝐶 ∨ 𝐵 # 𝐷))) | ||
Theorem | apneg 7848 | Negation respects apartness. (Contributed by Jim Kingdon, 14-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵)) | ||
Theorem | mulext1 7849 | Left extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) → 𝐴 # 𝐵)) | ||
Theorem | mulext2 7850 | Right extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 · 𝐴) # (𝐶 · 𝐵) → 𝐴 # 𝐵)) | ||
Theorem | mulext 7851 | Strong extensionality for multiplication. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5573. For us, it is proved a different way. (Contributed by Jim Kingdon, 23-Feb-2020.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) # (𝐶 · 𝐷) → (𝐴 # 𝐶 ∨ 𝐵 # 𝐷))) | ||
Theorem | mulap0r 7852 | A product apart from zero. Lemma 2.13 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 24-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0)) | ||
Theorem | msqge0 7853 | A square is nonnegative. Lemma 2.35 of [Geuvers], p. 9. (Contributed by NM, 23-May-2007.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴)) | ||
Theorem | msqge0i 7854 | A square is nonnegative. (Contributed by NM, 14-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ 0 ≤ (𝐴 · 𝐴) | ||
Theorem | msqge0d 7855 | A square is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐴)) | ||
Theorem | mulge0 7856 | The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵)) | ||
Theorem | mulge0i 7857 | The product of two nonnegative numbers is nonnegative. (Contributed by NM, 30-Jul-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵)) | ||
Theorem | mulge0d 7858 | The product of two nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) | ||
Theorem | apti 7859 | Complex apartness is tight. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) | ||
Theorem | apne 7860 | Apartness implies negated equality. We cannot in general prove the converse, which is the whole point of having separate notations for apartness and negated equality. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 → 𝐴 ≠ 𝐵)) | ||
Theorem | leltap 7861 | '<_' implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴 < 𝐵 ↔ 𝐵 # 𝐴)) | ||
Theorem | gt0ap0 7862 | Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0) | ||
Theorem | gt0ap0i 7863 | Positive means apart from zero (useful for ordering theorems involving division). (Contributed by Jim Kingdon, 27-Feb-2020.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 < 𝐴 → 𝐴 # 0) | ||
Theorem | gt0ap0ii 7864 | Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.) |
⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ 𝐴 # 0 | ||
Theorem | gt0ap0d 7865 | Positive implies apart from zero. Because of the way we define #, 𝐴 must be an element of ℝ, not just ℝ*. (Contributed by Jim Kingdon, 27-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → 𝐴 # 0) | ||
Theorem | negap0 7866 | A number is apart from zero iff its negative is apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.) |
⊢ (𝐴 ∈ ℂ → (𝐴 # 0 ↔ -𝐴 # 0)) | ||
Theorem | ltleap 7867 | Less than in terms of non-strict order and apartness. (Contributed by Jim Kingdon, 28-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 # 𝐵))) | ||
Theorem | ltap 7868 | 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 # 𝐴) | ||
Theorem | gtapii 7869 | 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐴 < 𝐵 ⇒ ⊢ 𝐵 # 𝐴 | ||
Theorem | ltapii 7870 | 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐴 < 𝐵 ⇒ ⊢ 𝐴 # 𝐵 | ||
Theorem | ltapi 7871 | 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 < 𝐵 → 𝐵 # 𝐴) | ||
Theorem | gtapd 7872 | 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐵 # 𝐴) | ||
Theorem | ltapd 7873 | 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 # 𝐵) | ||
Theorem | leltapd 7874 | '<_' implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 𝐵 # 𝐴)) | ||
Theorem | ap0gt0 7875 | A nonnegative number is apart from zero if and only if it is positive. (Contributed by Jim Kingdon, 11-Aug-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 # 0 ↔ 0 < 𝐴)) | ||
Theorem | ap0gt0d 7876 | A nonzero nonnegative number is positive. (Contributed by Jim Kingdon, 11-Aug-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → 0 < 𝐴) | ||
Theorem | subap0d 7877 | Two numbers apart from each other have difference apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) # 0) | ||
Theorem | recextlem1 7878 | Lemma for recexap 7880. (Contributed by Eric Schmidt, 23-May-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵))) | ||
Theorem | recexaplem2 7879 | Lemma for recexap 7880. (Contributed by Jim Kingdon, 20-Feb-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0) | ||
Theorem | recexap 7880* | Existence of reciprocal of nonzero complex number. (Contributed by Jim Kingdon, 20-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1) | ||
Theorem | mulap0 7881 | The product of two numbers apart from zero is apart from zero. Lemma 2.15 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 22-Feb-2020.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 · 𝐵) # 0) | ||
Theorem | mulap0b 7882 | The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0)) | ||
Theorem | mulap0i 7883 | The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 23-Feb-2020.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐴 # 0 & ⊢ 𝐵 # 0 ⇒ ⊢ (𝐴 · 𝐵) # 0 | ||
Theorem | mulap0bd 7884 | The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0)) | ||
Theorem | mulap0d 7885 | The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 23-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) # 0) | ||
Theorem | mulap0bad 7886 | A factor of a complex number apart from zero is apart from zero. Partial converse of mulap0d 7885 and consequence of mulap0bd 7884. (Contributed by Jim Kingdon, 24-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 · 𝐵) # 0) ⇒ ⊢ (𝜑 → 𝐴 # 0) | ||
Theorem | mulap0bbd 7887 | A factor of a complex number apart from zero is apart from zero. Partial converse of mulap0d 7885 and consequence of mulap0bd 7884. (Contributed by Jim Kingdon, 24-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 · 𝐵) # 0) ⇒ ⊢ (𝜑 → 𝐵 # 0) | ||
Theorem | mulcanapd 7888 | Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | mulcanap2d 7889 | Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | mulcanapad 7890 | Cancellation of a nonzero factor on the left in an equation. One-way deduction form of mulcanapd 7888. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) & ⊢ (𝜑 → (𝐶 · 𝐴) = (𝐶 · 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | mulcanap2ad 7891 | Cancellation of a nonzero factor on the right in an equation. One-way deduction form of mulcanap2d 7889. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) & ⊢ (𝜑 → (𝐴 · 𝐶) = (𝐵 · 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | mulcanap 7892 | Cancellation law for multiplication (full theorem form). (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | mulcanap2 7893 | Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | mulcanapi 7894 | Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 # 0 ⇒ ⊢ ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵) | ||
Theorem | muleqadd 7895 | Property of numbers whose product equals their sum. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 13-Nov-2006.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = (𝐴 + 𝐵) ↔ ((𝐴 − 1) · (𝐵 − 1)) = 1)) | ||
Theorem | receuap 7896* | Existential uniqueness of reciprocals. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) | ||
Syntax | cdiv 7897 | Extend class notation to include division. |
class / | ||
Definition | df-div 7898* | Define division. Theorem divmulap 7900 relates it to multiplication, and divclap 7903 and redivclap 7956 prove its closure laws. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.) |
⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | ||
Theorem | divvalap 7899* | Value of division: the (unique) element 𝑥 such that (𝐵 · 𝑥) = 𝐴. This is meaningful only when 𝐵 is apart from zero. (Contributed by Jim Kingdon, 21-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) | ||
Theorem | divmulap 7900 | Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |