 Home Intuitionistic Logic ExplorerTheorem List (p. 79 of 105) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7801-7900   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremdivcanap3zi 7801 A cancellation law for division. (Contributed by Jim Kingdon, 27-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐵 # 0 → ((𝐵 · 𝐴) / 𝐵) = 𝐴)

Theoremdivcanap4zi 7802 A cancellation law for division. (Contributed by Jim Kingdon, 27-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐵 # 0 → ((𝐴 · 𝐵) / 𝐵) = 𝐴)

Theoremrec11api 7803 Reciprocal is one-to-one. (Contributed by Jim Kingdon, 28-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       ((𝐴 # 0 ∧ 𝐵 # 0) → ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵))

Theoremdivclapi 7804 Closure law for division. (Contributed by Jim Kingdon, 28-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐵 # 0       (𝐴 / 𝐵) ∈ ℂ

Theoremdivcanap2i 7805 A cancellation law for division. (Contributed by Jim Kingdon, 28-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐵 # 0       (𝐵 · (𝐴 / 𝐵)) = 𝐴

Theoremdivcanap1i 7806 A cancellation law for division. (Contributed by Jim Kingdon, 28-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐵 # 0       ((𝐴 / 𝐵) · 𝐵) = 𝐴

Theoremdivrecapi 7807 Relationship between division and reciprocal. (Contributed by Jim Kingdon, 28-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐵 # 0       (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))

Theoremdivcanap3i 7808 A cancellation law for division. (Contributed by Jim Kingdon, 28-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐵 # 0       ((𝐵 · 𝐴) / 𝐵) = 𝐴

Theoremdivcanap4i 7809 A cancellation law for division. (Contributed by Jim Kingdon, 28-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐵 # 0       ((𝐴 · 𝐵) / 𝐵) = 𝐴

Theoremdivap0i 7810 The ratio of numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 28-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐴 # 0    &   𝐵 # 0       (𝐴 / 𝐵) # 0

Theoremrec11apii 7811 Reciprocal is one-to-one. (Contributed by Jim Kingdon, 28-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐴 # 0    &   𝐵 # 0       ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵)

Theoremdivassapzi 7812 An associative law for division. (Contributed by Jim Kingdon, 28-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       (𝐶 # 0 → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)))

Theoremdivmulapzi 7813 Relationship between division and multiplication. (Contributed by Jim Kingdon, 28-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       (𝐵 # 0 → ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴))

Theoremdivdirapzi 7814 Distribution of division over addition. (Contributed by Jim Kingdon, 28-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       (𝐶 # 0 → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)))

Theoremdivdiv23apzi 7815 Swap denominators in a division. (Contributed by Jim Kingdon, 28-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐵 # 0 ∧ 𝐶 # 0) → ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵))

Theoremdivmulapi 7816 Relationship between division and multiplication. (Contributed by Jim Kingdon, 29-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐵 # 0       ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴)

Theoremdivdiv32api 7817 Swap denominators in a division. (Contributed by Jim Kingdon, 29-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐵 # 0    &   𝐶 # 0       ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵)

Theoremdivassapi 7818 An associative law for division. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐶 # 0       ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶))

Theoremdivdirapi 7819 Distribution of division over addition. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐶 # 0       ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))

Theoremdiv23api 7820 A commutative/associative law for division. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐶 # 0       ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)

Theoremdiv11api 7821 One-to-one relationship for division. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐶 # 0       ((𝐴 / 𝐶) = (𝐵 / 𝐶) ↔ 𝐴 = 𝐵)

Theoremdivmuldivapi 7822 Multiplication of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ    &   𝐵 # 0    &   𝐷 # 0       ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))

Theoremdivmul13api 7823 Swap denominators of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ    &   𝐵 # 0    &   𝐷 # 0       ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐶 / 𝐵) · (𝐴 / 𝐷))

𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ    &   𝐵 # 0    &   𝐷 # 0       ((𝐴 / 𝐵) + (𝐶 / 𝐷)) = (((𝐴 · 𝐷) + (𝐶 · 𝐵)) / (𝐵 · 𝐷))

Theoremdivdivdivapi 7825 Division of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ    &   𝐵 # 0    &   𝐷 # 0    &   𝐶 # 0       ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶))

Theoremrerecclapzi 7826 Closure law for reciprocal. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℝ       (𝐴 # 0 → (1 / 𝐴) ∈ ℝ)

Theoremrerecclapi 7827 Closure law for reciprocal. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℝ    &   𝐴 # 0       (1 / 𝐴) ∈ ℝ

Theoremredivclapzi 7828 Closure law for division of reals. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐵 # 0 → (𝐴 / 𝐵) ∈ ℝ)

Theoremredivclapi 7829 Closure law for division of reals. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐵 # 0       (𝐴 / 𝐵) ∈ ℝ

Theoremdiv1d 7830 A number divided by 1 is itself. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 / 1) = 𝐴)

Theoremrecclapd 7831 Closure law for reciprocal. (Contributed by Jim Kingdon, 3-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (1 / 𝐴) ∈ ℂ)

Theoremrecap0d 7832 The reciprocal of a number apart from zero is apart from zero. (Contributed by Jim Kingdon, 3-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (1 / 𝐴) # 0)

Theoremrecidapd 7833 Multiplication of a number and its reciprocal. (Contributed by Jim Kingdon, 3-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (𝐴 · (1 / 𝐴)) = 1)

Theoremrecidap2d 7834 Multiplication of a number and its reciprocal. (Contributed by Jim Kingdon, 3-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → ((1 / 𝐴) · 𝐴) = 1)

Theoremrecrecapd 7835 A number is equal to the reciprocal of its reciprocal. (Contributed by Jim Kingdon, 3-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (1 / (1 / 𝐴)) = 𝐴)

Theoremdividapd 7836 A number divided by itself is one. (Contributed by Jim Kingdon, 3-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (𝐴 / 𝐴) = 1)

Theoremdiv0apd 7837 Division into zero is zero. (Contributed by Jim Kingdon, 3-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (0 / 𝐴) = 0)

Theoremapmul1 7838 Multiplication of both sides of complex apartness by a complex number apart from zero. (Contributed by Jim Kingdon, 20-Mar-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))

Theoremdivclapd 7839 Closure law for division. (Contributed by Jim Kingdon, 29-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → (𝐴 / 𝐵) ∈ ℂ)

Theoremdivcanap1d 7840 A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐴 / 𝐵) · 𝐵) = 𝐴)

Theoremdivcanap2d 7841 A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → (𝐵 · (𝐴 / 𝐵)) = 𝐴)

Theoremdivrecapd 7842 Relationship between division and reciprocal. Theorem I.9 of [Apostol] p. 18. (Contributed by Jim Kingdon, 29-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))

Theoremdivrecap2d 7843 Relationship between division and reciprocal. (Contributed by Jim Kingdon, 29-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴))

Theoremdivcanap3d 7844 A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐵 · 𝐴) / 𝐵) = 𝐴)

Theoremdivcanap4d 7845 A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐴 · 𝐵) / 𝐵) = 𝐴)

Theoremdiveqap0d 7846 If a ratio is zero, the numerator is zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑 → (𝐴 / 𝐵) = 0)       (𝜑𝐴 = 0)

Theoremdiveqap1d 7847 Equality in terms of unit ratio. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑 → (𝐴 / 𝐵) = 1)       (𝜑𝐴 = 𝐵)

Theoremdiveqap1ad 7848 The quotient of two complex numbers is one iff they are equal. Deduction form of diveqap1 7755. Generalization of diveqap1d 7847. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐴 / 𝐵) = 1 ↔ 𝐴 = 𝐵))

Theoremdiveqap0ad 7849 A fraction of complex numbers is zero iff its numerator is. Deduction form of diveqap0 7734. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐴 / 𝐵) = 0 ↔ 𝐴 = 0))

Theoremdivap1d 7850 If two complex numbers are apart, their quotient is apart from one. (Contributed by Jim Kingdon, 20-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐴 # 𝐵)       (𝜑 → (𝐴 / 𝐵) # 1)

Theoremdivap0bd 7851 A ratio is zero iff the numerator is zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → (𝐴 # 0 ↔ (𝐴 / 𝐵) # 0))

Theoremdivnegapd 7852 Move negative sign inside of a division. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → -(𝐴 / 𝐵) = (-𝐴 / 𝐵))

Theoremdivneg2apd 7853 Move negative sign inside of a division. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → -(𝐴 / 𝐵) = (𝐴 / -𝐵))

Theoremdiv2negapd 7854 Quotient of two negatives. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → (-𝐴 / -𝐵) = (𝐴 / 𝐵))

Theoremdivap0d 7855 The ratio of numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 3-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝐵 # 0)       (𝜑 → (𝐴 / 𝐵) # 0)

Theoremrecdivapd 7856 The reciprocal of a ratio. (Contributed by Jim Kingdon, 3-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝐵 # 0)       (𝜑 → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴))

Theoremrecdivap2d 7857 Division into a reciprocal. (Contributed by Jim Kingdon, 3-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝐵 # 0)       (𝜑 → ((1 / 𝐴) / 𝐵) = (1 / (𝐴 · 𝐵)))

Theoremdivcanap6d 7858 Cancellation of inverted fractions. (Contributed by Jim Kingdon, 3-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐴 / 𝐵) · (𝐵 / 𝐴)) = 1)

Theoremddcanapd 7859 Cancellation in a double division. (Contributed by Jim Kingdon, 3-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝐵 # 0)       (𝜑 → (𝐴 / (𝐴 / 𝐵)) = 𝐵)

Theoremrec11apd 7860 Reciprocal is one-to-one. (Contributed by Jim Kingdon, 3-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝐵 # 0)    &   (𝜑 → (1 / 𝐴) = (1 / 𝐵))       (𝜑𝐴 = 𝐵)

Theoremdivmulapd 7861 Relationship between division and multiplication. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴))

Theoremdiv32apd 7862 A commutative/associative law for division. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐴 / 𝐵) · 𝐶) = (𝐴 · (𝐶 / 𝐵)))

Theoremdiv13apd 7863 A commutative/associative law for division. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐴 / 𝐵) · 𝐶) = ((𝐶 / 𝐵) · 𝐴))

Theoremdivdiv32apd 7864 Swap denominators in a division. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵))

Theoremdivcanap5d 7865 Cancellation of common factor in a ratio. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐶 · 𝐴) / (𝐶 · 𝐵)) = (𝐴 / 𝐵))

Theoremdivcanap5rd 7866 Cancellation of common factor in a ratio. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 · 𝐶) / (𝐵 · 𝐶)) = (𝐴 / 𝐵))

Theoremdivcanap7d 7867 Cancel equal divisors in a division. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 / 𝐶) / (𝐵 / 𝐶)) = (𝐴 / 𝐵))

Theoremdmdcanapd 7868 Cancellation law for division and multiplication. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐵 / 𝐶) · (𝐴 / 𝐵)) = (𝐴 / 𝐶))

Theoremdmdcanap2d 7869 Cancellation law for division and multiplication. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 / 𝐵) · (𝐵 / 𝐶)) = (𝐴 / 𝐶))

Theoremdivdivap1d 7870 Division into a fraction. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶)))

Theoremdivdivap2d 7871 Division by a fraction. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵))

Theoremdivmulap2d 7872 Relationship between division and multiplication. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 / 𝐶) = 𝐵𝐴 = (𝐶 · 𝐵)))

Theoremdivmulap3d 7873 Relationship between division and multiplication. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 / 𝐶) = 𝐵𝐴 = (𝐵 · 𝐶)))

Theoremdivassapd 7874 An associative law for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)))

Theoremdiv12apd 7875 A commutative/associative law for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → (𝐴 · (𝐵 / 𝐶)) = (𝐵 · (𝐴 / 𝐶)))

Theoremdiv23apd 7876 A commutative/associative law for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵))

Theoremdivdirapd 7877 Distribution of division over addition. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)))

Theoremdivsubdirapd 7878 Distribution of division over subtraction. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶)))

Theoremdiv11apd 7879 One-to-one relationship for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)    &   (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐶))       (𝜑𝐴 = 𝐵)

Theoremdivmuldivapd 7880 Multiplication of two ratios. (Contributed by Jim Kingdon, 30-Jul-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐷 # 0)       (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)))

Theoremrerecclapd 7881 Closure law for reciprocal. (Contributed by Jim Kingdon, 29-Feb-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 # 0)       (𝜑 → (1 / 𝐴) ∈ ℝ)

Theoremredivclapd 7882 Closure law for division of reals. (Contributed by Jim Kingdon, 29-Feb-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐵 # 0)       (𝜑 → (𝐴 / 𝐵) ∈ ℝ)

Theoremmvllmulapd 7883 Move LHS left multiplication to RHS. (Contributed by Jim Kingdon, 10-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑 → (𝐴 · 𝐵) = 𝐶)       (𝜑𝐵 = (𝐶 / 𝐴))

3.3.9  Ordering on reals (cont.)

Theoremltp1 7884 A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.)
(𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))

Theoremlep1 7885 A number is less than or equal to itself plus 1. (Contributed by NM, 5-Jan-2006.)
(𝐴 ∈ ℝ → 𝐴 ≤ (𝐴 + 1))

Theoremltm1 7886 A number minus 1 is less than itself. (Contributed by NM, 9-Apr-2006.)
(𝐴 ∈ ℝ → (𝐴 − 1) < 𝐴)

Theoremlem1 7887 A number minus 1 is less than or equal to itself. (Contributed by Mario Carneiro, 2-Oct-2015.)
(𝐴 ∈ ℝ → (𝐴 − 1) ≤ 𝐴)

Theoremletrp1 7888 A transitive property of 'less than or equal' and plus 1. (Contributed by NM, 5-Aug-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ≤ (𝐵 + 1))

Theoremp1le 7889 A transitive property of plus 1 and 'less than or equal'. (Contributed by NM, 16-Aug-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + 1) ≤ 𝐵) → 𝐴𝐵)

Theoremrecgt0 7890 The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 25-Aug-1999.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))

Theoremprodgt0gt0 7891 Infer that a multiplicand is positive from a positive multiplier and positive product. See prodgt0 7892 for the same theorem with 0 < 𝐴 replaced by the weaker condition 0 ≤ 𝐴. (Contributed by Jim Kingdon, 29-Feb-2020.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐵)

Theoremprodgt0 7892 Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 24-Apr-2005.) (Revised by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐵)

Theoremprodgt02 7893 Infer that a multiplier is positive from a nonnegative multiplicand and positive product. (Contributed by NM, 24-Apr-2005.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐵 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐴)

Theoremprodge0 7894 Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ (𝐴 · 𝐵))) → 0 ≤ 𝐵)

Theoremprodge02 7895 Infer that a multiplier is nonnegative from a positive multiplicand and nonnegative product. (Contributed by NM, 2-Jul-2005.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐵 ∧ 0 ≤ (𝐴 · 𝐵))) → 0 ≤ 𝐴)

Theoremltmul2 7896 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 13-Feb-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵)))

Theoremlemul2 7897 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 16-Mar-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))

Theoremlemul1a 7898 Multiplication of both sides of 'less than or equal to' by a nonnegative number. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 21-Feb-2005.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))

Theoremlemul2a 7899 Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))

Theoremltmul12a 7900 Comparison of product of two positive numbers. (Contributed by NM, 30-Dec-2005.)
((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷))

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10490
 Copyright terms: Public domain < Previous  Next >