HomeHome Intuitionistic Logic Explorer
Theorem List (p. 81 of 105)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8001-8100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnndivtr 8001 Transitive property of divisibility: if 𝐴 divides 𝐵 and 𝐵 divides 𝐶, then 𝐴 divides 𝐶. Typically, 𝐶 would be an integer, although the theorem holds for complex 𝐶. (Contributed by NM, 3-May-2005.)
(((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ)) → (𝐶 / 𝐴) ∈ ℕ)
 
Theoremnnge1d 8002 A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑 → 1 ≤ 𝐴)
 
Theoremnngt0d 8003 A positive integer is positive. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑 → 0 < 𝐴)
 
Theoremnnne0d 8004 A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑𝐴 ≠ 0)
 
Theoremnnap0d 8005 A positive integer is apart from zero. (Contributed by Jim Kingdon, 25-Aug-2021.)
(𝜑𝐴 ∈ ℕ)       (𝜑𝐴 # 0)
 
Theoremnnrecred 8006 The reciprocal of a positive integer is real. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑 → (1 / 𝐴) ∈ ℝ)
 
Theoremnnaddcld 8007 Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)       (𝜑 → (𝐴 + 𝐵) ∈ ℕ)
 
Theoremnnmulcld 8008 Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)       (𝜑 → (𝐴 · 𝐵) ∈ ℕ)
 
Theoremnndivred 8009 A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℕ)       (𝜑 → (𝐴 / 𝐵) ∈ ℝ)
 
3.4.3  Decimal representation of numbers

The decimal representation of numbers/integers is based on the decimal digits 0 through 9 (df-0 6924 through df-9 8026), which are explicitly defined in the following. Note that the numbers 0 and 1 are constants defined as primitives of the complex number axiom system (see df-0 6924 and df-1 6925).

Integers can also be exhibited as sums of powers of 10 (e.g. the number 103 can be expressed as ((10↑2) + 3)) or as some other expression built from operations on the numbers 0 through 9. For example, the prime number 823541 can be expressed as (7↑7) − 2.

Most abstract math rarely requires numbers larger than 4. Even in Wiles' proof of Fermat's Last Theorem, the largest number used appears to be 12.

 
Syntaxc2 8010 Extend class notation to include the number 2.
class 2
 
Syntaxc3 8011 Extend class notation to include the number 3.
class 3
 
Syntaxc4 8012 Extend class notation to include the number 4.
class 4
 
Syntaxc5 8013 Extend class notation to include the number 5.
class 5
 
Syntaxc6 8014 Extend class notation to include the number 6.
class 6
 
Syntaxc7 8015 Extend class notation to include the number 7.
class 7
 
Syntaxc8 8016 Extend class notation to include the number 8.
class 8
 
Syntaxc9 8017 Extend class notation to include the number 9.
class 9
 
Syntaxc10 8018 Extend class notation to include the number 10.
class 10
 
Definitiondf-2 8019 Define the number 2. (Contributed by NM, 27-May-1999.)
2 = (1 + 1)
 
Definitiondf-3 8020 Define the number 3. (Contributed by NM, 27-May-1999.)
3 = (2 + 1)
 
Definitiondf-4 8021 Define the number 4. (Contributed by NM, 27-May-1999.)
4 = (3 + 1)
 
Definitiondf-5 8022 Define the number 5. (Contributed by NM, 27-May-1999.)
5 = (4 + 1)
 
Definitiondf-6 8023 Define the number 6. (Contributed by NM, 27-May-1999.)
6 = (5 + 1)
 
Definitiondf-7 8024 Define the number 7. (Contributed by NM, 27-May-1999.)
7 = (6 + 1)
 
Definitiondf-8 8025 Define the number 8. (Contributed by NM, 27-May-1999.)
8 = (7 + 1)
 
Definitiondf-9 8026 Define the number 9. (Contributed by NM, 27-May-1999.)
9 = (8 + 1)
 
Theorem0ne1 8027 0 ≠ 1 (common case). See aso 1ap0 7625. (Contributed by David A. Wheeler, 8-Dec-2018.)
0 ≠ 1
 
Theorem1ne0 8028 1 ≠ 0. See aso 1ap0 7625. (Contributed by Jim Kingdon, 9-Mar-2020.)
1 ≠ 0
 
Theorem1m1e0 8029 (1 − 1) = 0 (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
(1 − 1) = 0
 
Theorem2re 8030 The number 2 is real. (Contributed by NM, 27-May-1999.)
2 ∈ ℝ
 
Theorem2cn 8031 The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.)
2 ∈ ℂ
 
Theorem2ex 8032 2 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
2 ∈ V
 
Theorem2cnd 8033 2 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(𝜑 → 2 ∈ ℂ)
 
Theorem3re 8034 The number 3 is real. (Contributed by NM, 27-May-1999.)
3 ∈ ℝ
 
Theorem3cn 8035 The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.)
3 ∈ ℂ
 
Theorem3ex 8036 3 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
3 ∈ V
 
Theorem4re 8037 The number 4 is real. (Contributed by NM, 27-May-1999.)
4 ∈ ℝ
 
Theorem4cn 8038 The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.)
4 ∈ ℂ
 
Theorem5re 8039 The number 5 is real. (Contributed by NM, 27-May-1999.)
5 ∈ ℝ
 
Theorem5cn 8040 The number 5 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
5 ∈ ℂ
 
Theorem6re 8041 The number 6 is real. (Contributed by NM, 27-May-1999.)
6 ∈ ℝ
 
Theorem6cn 8042 The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
6 ∈ ℂ
 
Theorem7re 8043 The number 7 is real. (Contributed by NM, 27-May-1999.)
7 ∈ ℝ
 
Theorem7cn 8044 The number 7 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
7 ∈ ℂ
 
Theorem8re 8045 The number 8 is real. (Contributed by NM, 27-May-1999.)
8 ∈ ℝ
 
Theorem8cn 8046 The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
8 ∈ ℂ
 
Theorem9re 8047 The number 9 is real. (Contributed by NM, 27-May-1999.)
9 ∈ ℝ
 
Theorem9cn 8048 The number 9 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
9 ∈ ℂ
 
Theorem0le0 8049 Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.)
0 ≤ 0
 
Theorem0le2 8050 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.)
0 ≤ 2
 
Theorem2pos 8051 The number 2 is positive. (Contributed by NM, 27-May-1999.)
0 < 2
 
Theorem2ne0 8052 The number 2 is nonzero. (Contributed by NM, 9-Nov-2007.)
2 ≠ 0
 
Theorem2ap0 8053 The number 2 is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.)
2 # 0
 
Theorem3pos 8054 The number 3 is positive. (Contributed by NM, 27-May-1999.)
0 < 3
 
Theorem3ne0 8055 The number 3 is nonzero. (Contributed by FL, 17-Oct-2010.) (Proof shortened by Andrew Salmon, 7-May-2011.)
3 ≠ 0
 
Theorem3ap0 8056 The number 3 is apart from zero. (Contributed by Jim Kingdon, 10-Oct-2021.)
3 # 0
 
Theorem4pos 8057 The number 4 is positive. (Contributed by NM, 27-May-1999.)
0 < 4
 
Theorem4ne0 8058 The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.)
4 ≠ 0
 
Theorem4ap0 8059 The number 4 is apart from zero. (Contributed by Jim Kingdon, 10-Oct-2021.)
4 # 0
 
Theorem5pos 8060 The number 5 is positive. (Contributed by NM, 27-May-1999.)
0 < 5
 
Theorem6pos 8061 The number 6 is positive. (Contributed by NM, 27-May-1999.)
0 < 6
 
Theorem7pos 8062 The number 7 is positive. (Contributed by NM, 27-May-1999.)
0 < 7
 
Theorem8pos 8063 The number 8 is positive. (Contributed by NM, 27-May-1999.)
0 < 8
 
Theorem9pos 8064 The number 9 is positive. (Contributed by NM, 27-May-1999.)
0 < 9
 
3.4.4  Some properties of specific numbers

This includes adding two pairs of values 1..10 (where the right is less than the left) and where the left is less than the right for the values 1..10.

 
Theoremneg1cn 8065 -1 is a complex number (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
-1 ∈ ℂ
 
Theoremneg1rr 8066 -1 is a real number (common case). (Contributed by David A. Wheeler, 5-Dec-2018.)
-1 ∈ ℝ
 
Theoremneg1ne0 8067 -1 is nonzero (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
-1 ≠ 0
 
Theoremneg1lt0 8068 -1 is less than 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
-1 < 0
 
Theoremneg1ap0 8069 -1 is apart from zero. (Contributed by Jim Kingdon, 9-Jun-2020.)
-1 # 0
 
Theoremnegneg1e1 8070 --1 is 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
--1 = 1
 
Theorem1pneg1e0 8071 1 + -1 is 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(1 + -1) = 0
 
Theorem0m0e0 8072 0 minus 0 equals 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(0 − 0) = 0
 
Theorem1m0e1 8073 1 - 0 = 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(1 − 0) = 1
 
Theorem0p1e1 8074 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.)
(0 + 1) = 1
 
Theorem1p0e1 8075 1 + 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.)
(1 + 0) = 1
 
Theorem1p1e2 8076 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.)
(1 + 1) = 2
 
Theorem2m1e1 8077 2 - 1 = 1. The result is on the right-hand-side to be consistent with similar proofs like 4p4e8 8098. (Contributed by David A. Wheeler, 4-Jan-2017.)
(2 − 1) = 1
 
Theorem1e2m1 8078 1 = 2 - 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
1 = (2 − 1)
 
Theorem3m1e2 8079 3 - 1 = 2. (Contributed by FL, 17-Oct-2010.) (Revised by NM, 10-Dec-2017.)
(3 − 1) = 2
 
Theorem2p2e4 8080 Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: http://us.metamath.org/mpeuni/mmset.html#trivia. (Contributed by NM, 27-May-1999.)
(2 + 2) = 4
 
Theorem2times 8081 Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.)
(𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
 
Theoremtimes2 8082 A number times 2. (Contributed by NM, 16-Oct-2007.)
(𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴))
 
Theorem2timesi 8083 Two times a number. (Contributed by NM, 1-Aug-1999.)
𝐴 ∈ ℂ       (2 · 𝐴) = (𝐴 + 𝐴)
 
Theoremtimes2i 8084 A number times 2. (Contributed by NM, 11-May-2004.)
𝐴 ∈ ℂ       (𝐴 · 2) = (𝐴 + 𝐴)
 
Theorem2div2e1 8085 2 divided by 2 is 1 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(2 / 2) = 1
 
Theorem2p1e3 8086 2 + 1 = 3. (Contributed by Mario Carneiro, 18-Apr-2015.)
(2 + 1) = 3
 
Theorem1p2e3 8087 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(1 + 2) = 3
 
Theorem3p1e4 8088 3 + 1 = 4. (Contributed by Mario Carneiro, 18-Apr-2015.)
(3 + 1) = 4
 
Theorem4p1e5 8089 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.)
(4 + 1) = 5
 
Theorem5p1e6 8090 5 + 1 = 6. (Contributed by Mario Carneiro, 18-Apr-2015.)
(5 + 1) = 6
 
Theorem6p1e7 8091 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.)
(6 + 1) = 7
 
Theorem7p1e8 8092 7 + 1 = 8. (Contributed by Mario Carneiro, 18-Apr-2015.)
(7 + 1) = 8
 
Theorem8p1e9 8093 8 + 1 = 9. (Contributed by Mario Carneiro, 18-Apr-2015.)
(8 + 1) = 9
 
Theorem3p2e5 8094 3 + 2 = 5. (Contributed by NM, 11-May-2004.)
(3 + 2) = 5
 
Theorem3p3e6 8095 3 + 3 = 6. (Contributed by NM, 11-May-2004.)
(3 + 3) = 6
 
Theorem4p2e6 8096 4 + 2 = 6. (Contributed by NM, 11-May-2004.)
(4 + 2) = 6
 
Theorem4p3e7 8097 4 + 3 = 7. (Contributed by NM, 11-May-2004.)
(4 + 3) = 7
 
Theorem4p4e8 8098 4 + 4 = 8. (Contributed by NM, 11-May-2004.)
(4 + 4) = 8
 
Theorem5p2e7 8099 5 + 2 = 7. (Contributed by NM, 11-May-2004.)
(5 + 2) = 7
 
Theorem5p3e8 8100 5 + 3 = 8. (Contributed by NM, 11-May-2004.)
(5 + 3) = 8
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10454
  Copyright terms: Public domain < Previous  Next >