 Home Intuitionistic Logic ExplorerTheorem List (p. 86 of 105) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8501-8600   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theorem7p4e11 8501 7 + 4 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(7 + 4) = 11

Theorem7p5e12 8502 7 + 5 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 + 5) = 12

Theorem7p6e13 8503 7 + 6 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 + 6) = 13

Theorem7p7e14 8504 7 + 7 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 + 7) = 14

Theorem8p2e10 8505 8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
(8 + 2) = 10

Theorem8p3e11 8506 8 + 3 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(8 + 3) = 11

Theorem8p4e12 8507 8 + 4 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 + 4) = 12

Theorem8p5e13 8508 8 + 5 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 + 5) = 13

Theorem8p6e14 8509 8 + 6 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 + 6) = 14

Theorem8p7e15 8510 8 + 7 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 + 7) = 15

Theorem8p8e16 8511 8 + 8 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 + 8) = 16

Theorem9p2e11 8512 9 + 2 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(9 + 2) = 11

Theorem9p3e12 8513 9 + 3 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 3) = 12

Theorem9p4e13 8514 9 + 4 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 4) = 13

Theorem9p5e14 8515 9 + 5 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 5) = 14

Theorem9p6e15 8516 9 + 6 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 6) = 15

Theorem9p7e16 8517 9 + 7 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 7) = 16

Theorem9p8e17 8518 9 + 8 = 17. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 8) = 17

Theorem9p9e18 8519 9 + 9 = 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 9) = 18

Theorem10p10e20 8520 10 + 10 = 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(10 + 10) = 20

Theorem10m1e9 8521 10 - 1 = 9. (Contributed by AV, 6-Sep-2021.)
(10 − 1) = 9

Theorem4t3lem 8522 Lemma for 4t3e12 8523 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 = (𝐵 + 1)    &   (𝐴 · 𝐵) = 𝐷    &   (𝐷 + 𝐴) = 𝐸       (𝐴 · 𝐶) = 𝐸

Theorem4t3e12 8523 4 times 3 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
(4 · 3) = 12

Theorem4t4e16 8524 4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
(4 · 4) = 16

Theorem5t2e10 8525 5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 4-Sep-2021.)
(5 · 2) = 10

Theorem5t3e15 8526 5 times 3 equals 15. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(5 · 3) = 15

Theorem5t4e20 8527 5 times 4 equals 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(5 · 4) = 20

Theorem5t5e25 8528 5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(5 · 5) = 25

Theorem6t2e12 8529 6 times 2 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
(6 · 2) = 12

Theorem6t3e18 8530 6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
(6 · 3) = 18

Theorem6t4e24 8531 6 times 4 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.)
(6 · 4) = 24

Theorem6t5e30 8532 6 times 5 equals 30. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(6 · 5) = 30

Theorem6t6e36 8533 6 times 6 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(6 · 6) = 36

Theorem7t2e14 8534 7 times 2 equals 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 · 2) = 14

Theorem7t3e21 8535 7 times 3 equals 21. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 · 3) = 21

Theorem7t4e28 8536 7 times 4 equals 28. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 · 4) = 28

Theorem7t5e35 8537 7 times 5 equals 35. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 · 5) = 35

Theorem7t6e42 8538 7 times 6 equals 42. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 · 6) = 42

Theorem7t7e49 8539 7 times 7 equals 49. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 · 7) = 49

Theorem8t2e16 8540 8 times 2 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 · 2) = 16

Theorem8t3e24 8541 8 times 3 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 · 3) = 24

Theorem8t4e32 8542 8 times 4 equals 32. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 · 4) = 32

Theorem8t5e40 8543 8 times 5 equals 40. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(8 · 5) = 40

Theorem8t6e48 8544 8 times 6 equals 48. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(8 · 6) = 48

Theorem8t7e56 8545 8 times 7 equals 56. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 · 7) = 56

Theorem8t8e64 8546 8 times 8 equals 64. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 · 8) = 64

Theorem9t2e18 8547 9 times 2 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 · 2) = 18

Theorem9t3e27 8548 9 times 3 equals 27. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 · 3) = 27

Theorem9t4e36 8549 9 times 4 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 · 4) = 36

Theorem9t5e45 8550 9 times 5 equals 45. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 · 5) = 45

Theorem9t6e54 8551 9 times 6 equals 54. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 · 6) = 54

Theorem9t7e63 8552 9 times 7 equals 63. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 · 7) = 63

Theorem9t8e72 8553 9 times 8 equals 72. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 · 8) = 72

Theorem9t9e81 8554 9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 · 9) = 81

Theorem9t11e99 8555 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.)
(9 · 11) = 99

Theorem9lt10 8556 9 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.)
9 < 10

Theorem8lt10 8557 8 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.)
8 < 10

Theorem7lt10 8558 7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
7 < 10

Theorem6lt10 8559 6 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
6 < 10

Theorem5lt10 8560 5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
5 < 10

Theorem4lt10 8561 4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
4 < 10

Theorem3lt10 8562 3 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
3 < 10

Theorem2lt10 8563 2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
2 < 10

Theorem1lt10 8564 1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.)
1 < 10

Theoremdecbin0 8565 Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝐴 ∈ ℕ0       (4 · 𝐴) = (2 · (2 · 𝐴))

Theoremdecbin2 8566 Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝐴 ∈ ℕ0       ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1))

Theoremdecbin3 8567 Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝐴 ∈ ℕ0       ((4 · 𝐴) + 3) = ((2 · ((2 · 𝐴) + 1)) + 1)

3.4.10  Upper sets of integers

Syntaxcuz 8568 Extend class notation with the upper integer function. Read "𝑀 " as "the set of integers greater than or equal to 𝑀."
class

Definitiondf-uz 8569* Define a function whose value at 𝑗 is the semi-infinite set of contiguous integers starting at 𝑗, which we will also call the upper integers starting at 𝑗. Read "𝑀 " as "the set of integers greater than or equal to 𝑀." See uzval 8570 for its value, uzssz 8587 for its relationship to , nnuz 8603 and nn0uz 8602 for its relationships to and 0, and eluz1 8572 and eluz2 8574 for its membership relations. (Contributed by NM, 5-Sep-2005.)
= (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})

Theoremuzval 8570* The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
(𝑁 ∈ ℤ → (ℤ𝑁) = {𝑘 ∈ ℤ ∣ 𝑁𝑘})

Theoremuzf 8571 The domain and range of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.)
:ℤ⟶𝒫 ℤ

Theoremeluz1 8572 Membership in the upper set of integers starting at 𝑀. (Contributed by NM, 5-Sep-2005.)
(𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))

Theoremeluzel2 8573 Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
(𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)

Theoremeluz2 8574 Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show 𝑀 ∈ ℤ. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
(𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))

Theoremeluz1i 8575 Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005.)
𝑀 ∈ ℤ       (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁))

Theoremeluzuzle 8576 An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.)
((𝐵 ∈ ℤ ∧ 𝐵𝐴) → (𝐶 ∈ (ℤ𝐴) → 𝐶 ∈ (ℤ𝐵)))

Theoremeluzelz 8577 A member of an upper set of integers is an integer. (Contributed by NM, 6-Sep-2005.)
(𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)

Theoremeluzelre 8578 A member of an upper set of integers is a real. (Contributed by Mario Carneiro, 31-Aug-2013.)
(𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)

Theoremeluzelcn 8579 A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
(𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℂ)

Theoremeluzle 8580 Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.)
(𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)

Theoremeluz 8581 Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))

Theoremuzid 8582 Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.)
(𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))

Theoremuzn0 8583 The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.)
(𝑀 ∈ ran ℤ𝑀 ≠ ∅)

Theoremuztrn 8584 Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.)
((𝑀 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))

Theoremuztrn2 8585 Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.)
𝑍 = (ℤ𝐾)       ((𝑁𝑍𝑀 ∈ (ℤ𝑁)) → 𝑀𝑍)

Theoremuzneg 8586 Contraposition law for upper integers. (Contributed by NM, 28-Nov-2005.)
(𝑁 ∈ (ℤ𝑀) → -𝑀 ∈ (ℤ‘-𝑁))

Theoremuzssz 8587 An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
(ℤ𝑀) ⊆ ℤ

Theoremuzss 8588 Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.)
(𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))

Theoremuztric 8589 Trichotomy of the ordering relation on integers, stated in terms of upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jun-2013.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))

Theoremuz11 8590 The upper integers function is one-to-one. (Contributed by NM, 12-Dec-2005.)
(𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝑁) ↔ 𝑀 = 𝑁))

Theoremeluzp1m1 8591 Membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))

Theoremeluzp1l 8592 Strict ordering implied by membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 < 𝑁)

Theoremeluzp1p1 8593 Membership in the next upper set of integers. (Contributed by NM, 5-Oct-2005.)
(𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ‘(𝑀 + 1)))

Theoremeluzaddi 8594 Membership in a later upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.)
𝑀 ∈ ℤ    &   𝐾 ∈ ℤ       (𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))

Theoremeluzsubi 8595 Membership in an earlier upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.)
𝑀 ∈ ℤ    &   𝐾 ∈ ℤ       (𝑁 ∈ (ℤ‘(𝑀 + 𝐾)) → (𝑁𝐾) ∈ (ℤ𝑀))

Theoremeluzadd 8596 Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))

Theoremeluzsub 8597 Membership in an earlier upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑁𝐾) ∈ (ℤ𝑀))

Theoremuzm1 8598 Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))

Theoremuznn0sub 8599 The nonnegative difference of integers is a nonnegative integer. (Contributed by NM, 4-Sep-2005.)
(𝑁 ∈ (ℤ𝑀) → (𝑁𝑀) ∈ ℕ0)

Theoremuzin 8600 Intersection of two upper intervals of integers. (Contributed by Mario Carneiro, 24-Dec-2013.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10490
 Copyright terms: Public domain < Previous  Next >