HomeHome Intuitionistic Logic Explorer
Theorem List (p. 87 of 110)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8601-8700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnumma 8601 Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = ((𝑇 · 𝐴) + 𝐵)    &   𝑁 = ((𝑇 · 𝐶) + 𝐷)    &   𝑃 ∈ ℕ0    &   ((𝐴 · 𝑃) + 𝐶) = 𝐸    &   ((𝐵 · 𝑃) + 𝐷) = 𝐹       ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
 
Theoremnummac 8602 Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = ((𝑇 · 𝐴) + 𝐵)    &   𝑁 = ((𝑇 · 𝐶) + 𝐷)    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸    &   ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)       ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
 
Theoremnumma2c 8603 Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = ((𝑇 · 𝐴) + 𝐵)    &   𝑁 = ((𝑇 · 𝐶) + 𝐷)    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸    &   ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)       ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
 
Theoremnumadd 8604 Add two decimal integers 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = ((𝑇 · 𝐴) + 𝐵)    &   𝑁 = ((𝑇 · 𝐶) + 𝐷)    &   (𝐴 + 𝐶) = 𝐸    &   (𝐵 + 𝐷) = 𝐹       (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
 
Theoremnumaddc 8605 Add two decimal integers 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = ((𝑇 · 𝐴) + 𝐵)    &   𝑁 = ((𝑇 · 𝐶) + 𝐷)    &   𝐹 ∈ ℕ0    &   ((𝐴 + 𝐶) + 1) = 𝐸    &   (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹)       (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
 
Theoremnummul1c 8606 The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝑃 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 = ((𝑇 · 𝐴) + 𝐵)    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   ((𝐴 · 𝑃) + 𝐸) = 𝐶    &   (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷)       (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷)
 
Theoremnummul2c 8607 The product of a decimal integer with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝑃 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 = ((𝑇 · 𝐴) + 𝐵)    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   ((𝑃 · 𝐴) + 𝐸) = 𝐶    &   (𝑃 · 𝐵) = ((𝑇 · 𝐸) + 𝐷)       (𝑃 · 𝑁) = ((𝑇 · 𝐶) + 𝐷)
 
Theoremdecma 8608 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   𝑃 ∈ ℕ0    &   ((𝐴 · 𝑃) + 𝐶) = 𝐸    &   ((𝐵 · 𝑃) + 𝐷) = 𝐹       ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
 
Theoremdecmac 8609 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸    &   ((𝐵 · 𝑃) + 𝐷) = 𝐺𝐹       ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
 
Theoremdecma2c 8610 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplier 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸    &   ((𝑃 · 𝐵) + 𝐷) = 𝐺𝐹       ((𝑃 · 𝑀) + 𝑁) = 𝐸𝐹
 
Theoremdecadd 8611 Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   (𝐴 + 𝐶) = 𝐸    &   (𝐵 + 𝐷) = 𝐹       (𝑀 + 𝑁) = 𝐸𝐹
 
Theoremdecaddc 8612 Add two numerals 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   ((𝐴 + 𝐶) + 1) = 𝐸    &   𝐹 ∈ ℕ0    &   (𝐵 + 𝐷) = 1𝐹       (𝑀 + 𝑁) = 𝐸𝐹
 
Theoremdecaddc2 8613 Add two numerals 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   ((𝐴 + 𝐶) + 1) = 𝐸    &   (𝐵 + 𝐷) = 10       (𝑀 + 𝑁) = 𝐸0
 
Theoremdecrmanc 8614 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by AV, 16-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑃 ∈ ℕ0    &   (𝐴 · 𝑃) = 𝐸    &   ((𝐵 · 𝑃) + 𝑁) = 𝐹       ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
 
Theoremdecrmac 8615 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by AV, 16-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝐴 · 𝑃) + 𝐺) = 𝐸    &   ((𝐵 · 𝑃) + 𝑁) = 𝐺𝐹       ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
 
Theoremdecaddm10 8616 The sum of two multiples of 10 is a multiple of 10. (Contributed by AV, 30-Jul-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       (𝐴0 + 𝐵0) = (𝐴 + 𝐵)0
 
Theoremdecaddi 8617 Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   (𝐵 + 𝑁) = 𝐶       (𝑀 + 𝑁) = 𝐴𝐶
 
Theoremdecaddci 8618 Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   (𝐴 + 1) = 𝐷    &   𝐶 ∈ ℕ0    &   (𝐵 + 𝑁) = 1𝐶       (𝑀 + 𝑁) = 𝐷𝐶
 
Theoremdecaddci2 8619 Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   (𝐴 + 1) = 𝐷    &   (𝐵 + 𝑁) = 10       (𝑀 + 𝑁) = 𝐷0
 
Theoremdecsubi 8620 Difference between a numeral 𝑀 and a nonnegative integer 𝑁 (no underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   (𝐴 + 1) = 𝐷    &   (𝐵𝑁) = 𝐶       (𝑀𝑁) = 𝐴𝐶
 
Theoremdecmul1 8621 The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
𝑃 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 = 𝐴𝐵    &   𝐷 ∈ ℕ0    &   (𝐴 · 𝑃) = 𝐶    &   (𝐵 · 𝑃) = 𝐷       (𝑁 · 𝑃) = 𝐶𝐷
 
Theoremdecmul1c 8622 The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝑃 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 = 𝐴𝐵    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   ((𝐴 · 𝑃) + 𝐸) = 𝐶    &   (𝐵 · 𝑃) = 𝐸𝐷       (𝑁 · 𝑃) = 𝐶𝐷
 
Theoremdecmul2c 8623 The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝑃 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 = 𝐴𝐵    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   ((𝑃 · 𝐴) + 𝐸) = 𝐶    &   (𝑃 · 𝐵) = 𝐸𝐷       (𝑃 · 𝑁) = 𝐶𝐷
 
Theoremdecmulnc 8624 The product of a numeral with a number (no carry). (Contributed by AV, 15-Jun-2021.)
𝑁 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       (𝑁 · 𝐴𝐵) = (𝑁 · 𝐴)(𝑁 · 𝐵)
 
Theorem11multnc 8625 The product of 11 (as numeral) with a number (no carry). (Contributed by AV, 15-Jun-2021.)
𝑁 ∈ ℕ0       (𝑁 · 11) = 𝑁𝑁
 
Theoremdecmul10add 8626 A multiplication of a number and a numeral expressed as addition with first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑀 ∈ ℕ0    &   𝐸 = (𝑀 · 𝐴)    &   𝐹 = (𝑀 · 𝐵)       (𝑀 · 𝐴𝐵) = (𝐸0 + 𝐹)
 
Theorem6p5lem 8627 Lemma for 6p5e11 8630 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
𝐴 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   𝐵 = (𝐷 + 1)    &   𝐶 = (𝐸 + 1)    &   (𝐴 + 𝐷) = 1𝐸       (𝐴 + 𝐵) = 1𝐶
 
Theorem5p5e10 8628 5 + 5 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
(5 + 5) = 10
 
Theorem6p4e10 8629 6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
(6 + 4) = 10
 
Theorem6p5e11 8630 6 + 5 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(6 + 5) = 11
 
Theorem6p6e12 8631 6 + 6 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
(6 + 6) = 12
 
Theorem7p3e10 8632 7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
(7 + 3) = 10
 
Theorem7p4e11 8633 7 + 4 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(7 + 4) = 11
 
Theorem7p5e12 8634 7 + 5 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 + 5) = 12
 
Theorem7p6e13 8635 7 + 6 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 + 6) = 13
 
Theorem7p7e14 8636 7 + 7 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 + 7) = 14
 
Theorem8p2e10 8637 8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
(8 + 2) = 10
 
Theorem8p3e11 8638 8 + 3 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(8 + 3) = 11
 
Theorem8p4e12 8639 8 + 4 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 + 4) = 12
 
Theorem8p5e13 8640 8 + 5 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 + 5) = 13
 
Theorem8p6e14 8641 8 + 6 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 + 6) = 14
 
Theorem8p7e15 8642 8 + 7 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 + 7) = 15
 
Theorem8p8e16 8643 8 + 8 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 + 8) = 16
 
Theorem9p2e11 8644 9 + 2 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(9 + 2) = 11
 
Theorem9p3e12 8645 9 + 3 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 3) = 12
 
Theorem9p4e13 8646 9 + 4 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 4) = 13
 
Theorem9p5e14 8647 9 + 5 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 5) = 14
 
Theorem9p6e15 8648 9 + 6 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 6) = 15
 
Theorem9p7e16 8649 9 + 7 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 7) = 16
 
Theorem9p8e17 8650 9 + 8 = 17. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 8) = 17
 
Theorem9p9e18 8651 9 + 9 = 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 + 9) = 18
 
Theorem10p10e20 8652 10 + 10 = 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(10 + 10) = 20
 
Theorem10m1e9 8653 10 - 1 = 9. (Contributed by AV, 6-Sep-2021.)
(10 − 1) = 9
 
Theorem4t3lem 8654 Lemma for 4t3e12 8655 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 = (𝐵 + 1)    &   (𝐴 · 𝐵) = 𝐷    &   (𝐷 + 𝐴) = 𝐸       (𝐴 · 𝐶) = 𝐸
 
Theorem4t3e12 8655 4 times 3 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
(4 · 3) = 12
 
Theorem4t4e16 8656 4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
(4 · 4) = 16
 
Theorem5t2e10 8657 5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 4-Sep-2021.)
(5 · 2) = 10
 
Theorem5t3e15 8658 5 times 3 equals 15. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(5 · 3) = 15
 
Theorem5t4e20 8659 5 times 4 equals 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(5 · 4) = 20
 
Theorem5t5e25 8660 5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(5 · 5) = 25
 
Theorem6t2e12 8661 6 times 2 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
(6 · 2) = 12
 
Theorem6t3e18 8662 6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
(6 · 3) = 18
 
Theorem6t4e24 8663 6 times 4 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.)
(6 · 4) = 24
 
Theorem6t5e30 8664 6 times 5 equals 30. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(6 · 5) = 30
 
Theorem6t6e36 8665 6 times 6 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(6 · 6) = 36
 
Theorem7t2e14 8666 7 times 2 equals 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 · 2) = 14
 
Theorem7t3e21 8667 7 times 3 equals 21. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 · 3) = 21
 
Theorem7t4e28 8668 7 times 4 equals 28. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 · 4) = 28
 
Theorem7t5e35 8669 7 times 5 equals 35. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 · 5) = 35
 
Theorem7t6e42 8670 7 times 6 equals 42. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 · 6) = 42
 
Theorem7t7e49 8671 7 times 7 equals 49. (Contributed by Mario Carneiro, 19-Apr-2015.)
(7 · 7) = 49
 
Theorem8t2e16 8672 8 times 2 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 · 2) = 16
 
Theorem8t3e24 8673 8 times 3 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 · 3) = 24
 
Theorem8t4e32 8674 8 times 4 equals 32. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 · 4) = 32
 
Theorem8t5e40 8675 8 times 5 equals 40. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(8 · 5) = 40
 
Theorem8t6e48 8676 8 times 6 equals 48. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(8 · 6) = 48
 
Theorem8t7e56 8677 8 times 7 equals 56. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 · 7) = 56
 
Theorem8t8e64 8678 8 times 8 equals 64. (Contributed by Mario Carneiro, 19-Apr-2015.)
(8 · 8) = 64
 
Theorem9t2e18 8679 9 times 2 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 · 2) = 18
 
Theorem9t3e27 8680 9 times 3 equals 27. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 · 3) = 27
 
Theorem9t4e36 8681 9 times 4 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 · 4) = 36
 
Theorem9t5e45 8682 9 times 5 equals 45. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 · 5) = 45
 
Theorem9t6e54 8683 9 times 6 equals 54. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 · 6) = 54
 
Theorem9t7e63 8684 9 times 7 equals 63. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 · 7) = 63
 
Theorem9t8e72 8685 9 times 8 equals 72. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 · 8) = 72
 
Theorem9t9e81 8686 9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015.)
(9 · 9) = 81
 
Theorem9t11e99 8687 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.)
(9 · 11) = 99
 
Theorem9lt10 8688 9 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.)
9 < 10
 
Theorem8lt10 8689 8 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.)
8 < 10
 
Theorem7lt10 8690 7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
7 < 10
 
Theorem6lt10 8691 6 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
6 < 10
 
Theorem5lt10 8692 5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
5 < 10
 
Theorem4lt10 8693 4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
4 < 10
 
Theorem3lt10 8694 3 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
3 < 10
 
Theorem2lt10 8695 2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
2 < 10
 
Theorem1lt10 8696 1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.)
1 < 10
 
Theoremdecbin0 8697 Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝐴 ∈ ℕ0       (4 · 𝐴) = (2 · (2 · 𝐴))
 
Theoremdecbin2 8698 Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝐴 ∈ ℕ0       ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1))
 
Theoremdecbin3 8699 Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝐴 ∈ ℕ0       ((4 · 𝐴) + 3) = ((2 · ((2 · 𝐴) + 1)) + 1)
 
3.4.11  Upper sets of integers
 
Syntaxcuz 8700 Extend class notation with the upper integer function. Read "𝑀 " as "the set of integers greater than or equal to 𝑀."
class
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-10953
  Copyright terms: Public domain < Previous  Next >