HomeHome Intuitionistic Logic Explorer
Theorem List (p. 95 of 132)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9401-9500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem1rp 9401 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.)
1 ∈ ℝ+
 
Theorem2rp 9402 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
2 ∈ ℝ+
 
Theoremrpre 9403 A positive real is a real. (Contributed by NM, 27-Oct-2007.)
(𝐴 ∈ ℝ+𝐴 ∈ ℝ)
 
Theoremrpxr 9404 A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.)
(𝐴 ∈ ℝ+𝐴 ∈ ℝ*)
 
Theoremrpcn 9405 A positive real is a complex number. (Contributed by NM, 11-Nov-2008.)
(𝐴 ∈ ℝ+𝐴 ∈ ℂ)
 
Theoremnnrp 9406 A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.)
(𝐴 ∈ ℕ → 𝐴 ∈ ℝ+)
 
Theoremrpssre 9407 The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.)
+ ⊆ ℝ
 
Theoremrpgt0 9408 A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.)
(𝐴 ∈ ℝ+ → 0 < 𝐴)
 
Theoremrpge0 9409 A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.)
(𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
 
Theoremrpregt0 9410 A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
 
Theoremrprege0 9411 A positive real is a nonnegative real number. (Contributed by Mario Carneiro, 31-Jan-2014.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
 
Theoremrpne0 9412 A positive real is nonzero. (Contributed by NM, 18-Jul-2008.)
(𝐴 ∈ ℝ+𝐴 ≠ 0)
 
Theoremrpap0 9413 A positive real is apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
(𝐴 ∈ ℝ+𝐴 # 0)
 
Theoremrprene0 9414 A positive real is a nonzero real number. (Contributed by NM, 11-Nov-2008.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0))
 
Theoremrpreap0 9415 A positive real is a real number apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 𝐴 # 0))
 
Theoremrpcnne0 9416 A positive real is a nonzero complex number. (Contributed by NM, 11-Nov-2008.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
 
Theoremrpcnap0 9417 A positive real is a complex number apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 # 0))
 
Theoremralrp 9418 Quantification over positive reals. (Contributed by NM, 12-Feb-2008.)
(∀𝑥 ∈ ℝ+ 𝜑 ↔ ∀𝑥 ∈ ℝ (0 < 𝑥𝜑))
 
Theoremrexrp 9419 Quantification over positive reals. (Contributed by Mario Carneiro, 21-May-2014.)
(∃𝑥 ∈ ℝ+ 𝜑 ↔ ∃𝑥 ∈ ℝ (0 < 𝑥𝜑))
 
Theoremrpaddcl 9420 Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ+)
 
Theoremrpmulcl 9421 Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ+)
 
Theoremrpdivcl 9422 Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+)
 
Theoremrpreccl 9423 Closure law for reciprocation of positive reals. (Contributed by Jeff Hankins, 23-Nov-2008.)
(𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+)
 
Theoremrphalfcl 9424 Closure law for half of a positive real. (Contributed by Mario Carneiro, 31-Jan-2014.)
(𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+)
 
Theoremrpgecl 9425 A number greater or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ+)
 
Theoremrphalflt 9426 Half of a positive real is less than the original number. (Contributed by Mario Carneiro, 21-May-2014.)
(𝐴 ∈ ℝ+ → (𝐴 / 2) < 𝐴)
 
Theoremrerpdivcl 9427 Closure law for division of a real by a positive real. (Contributed by NM, 10-Nov-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
 
Theoremge0p1rp 9428 A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 5-Oct-2015.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 1) ∈ ℝ+)
 
Theoremrpnegap 9429 Either a real apart from zero or its negation is a positive real, but not both. (Contributed by Jim Kingdon, 23-Mar-2020.)
((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝐴 ∈ ℝ+ ⊻ -𝐴 ∈ ℝ+))
 
Theoremnegelrp 9430 Elementhood of a negation in the positive real numbers. (Contributed by Thierry Arnoux, 19-Sep-2018.)
(𝐴 ∈ ℝ → (-𝐴 ∈ ℝ+𝐴 < 0))
 
Theoremnegelrpd 9431 The negation of a negative number is in the positive real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 0)       (𝜑 → -𝐴 ∈ ℝ+)
 
Theorem0nrp 9432 Zero is not a positive real. Axiom 9 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
¬ 0 ∈ ℝ+
 
Theoremltsubrp 9433 Subtracting a positive real from another number decreases it. (Contributed by FL, 27-Dec-2007.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴𝐵) < 𝐴)
 
Theoremltaddrp 9434 Adding a positive number to another number increases it. (Contributed by FL, 27-Dec-2007.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵))
 
Theoremdifrp 9435 Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))
 
Theoremelrpd 9436 Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)       (𝜑𝐴 ∈ ℝ+)
 
Theoremnnrpd 9437 A positive integer is a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑𝐴 ∈ ℝ+)
 
Theoremrpred 9438 A positive real is a real. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑𝐴 ∈ ℝ)
 
Theoremrpxrd 9439 A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑𝐴 ∈ ℝ*)
 
Theoremrpcnd 9440 A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑𝐴 ∈ ℂ)
 
Theoremrpgt0d 9441 A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → 0 < 𝐴)
 
Theoremrpge0d 9442 A positive real is greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → 0 ≤ 𝐴)
 
Theoremrpne0d 9443 A positive real is nonzero. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑𝐴 ≠ 0)
 
Theoremrpap0d 9444 A positive real is apart from zero. (Contributed by Jim Kingdon, 28-Jul-2021.)
(𝜑𝐴 ∈ ℝ+)       (𝜑𝐴 # 0)
 
Theoremrpregt0d 9445 A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
 
Theoremrprege0d 9446 A positive real is real and greater or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
 
Theoremrprene0d 9447 A positive real is a nonzero real number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0))
 
Theoremrpcnne0d 9448 A positive real is a nonzero complex number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
 
Theoremrpreccld 9449 Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (1 / 𝐴) ∈ ℝ+)
 
Theoremrprecred 9450 Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (1 / 𝐴) ∈ ℝ)
 
Theoremrphalfcld 9451 Closure law for half of a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (𝐴 / 2) ∈ ℝ+)
 
Theoremreclt1d 9452 The reciprocal of a positive number less than 1 is greater than 1. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
 
Theoremrecgt1d 9453 The reciprocal of a positive number greater than 1 is less than 1. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (1 < 𝐴 ↔ (1 / 𝐴) < 1))
 
Theoremrpaddcld 9454 Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (𝐴 + 𝐵) ∈ ℝ+)
 
Theoremrpmulcld 9455 Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (𝐴 · 𝐵) ∈ ℝ+)
 
Theoremrpdivcld 9456 Closure law for division of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (𝐴 / 𝐵) ∈ ℝ+)
 
Theoremltrecd 9457 The reciprocal of both sides of 'less than'. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴)))
 
Theoremlerecd 9458 The reciprocal of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (𝐴𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴)))
 
Theoremltrec1d 9459 Reciprocal swap in a 'less than' relation. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑 → (1 / 𝐴) < 𝐵)       (𝜑 → (1 / 𝐵) < 𝐴)
 
Theoremlerec2d 9460 Reciprocal swap in a 'less than or equal to' relation. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐴 ≤ (1 / 𝐵))       (𝜑𝐵 ≤ (1 / 𝐴))
 
Theoremlediv2ad 9461 Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐶)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))
 
Theoremltdiv2d 9462 Division of a positive number by both sides of 'less than'. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴)))
 
Theoremlediv2d 9463 Division of a positive number by both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → (𝐴𝐵 ↔ (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)))
 
Theoremledivdivd 9464 Invert ratios of positive numbers and swap their ordering. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑𝐷 ∈ ℝ+)    &   (𝜑 → (𝐴 / 𝐵) ≤ (𝐶 / 𝐷))       (𝜑 → (𝐷 / 𝐶) ≤ (𝐵 / 𝐴))
 
Theoremdivge1 9465 The ratio of a number over a smaller positive number is larger than 1. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 1 ≤ (𝐵 / 𝐴))
 
Theoremdivlt1lt 9466 A real number divided by a positive real number is less than 1 iff the real number is less than the positive real number. (Contributed by AV, 25-May-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) < 1 ↔ 𝐴 < 𝐵))
 
Theoremdivle1le 9467 A real number divided by a positive real number is less than or equal to 1 iff the real number is less than or equal to the positive real number. (Contributed by AV, 29-Jun-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴𝐵))
 
Theoremledivge1le 9468 If a number is less than or equal to another number, the number divided by a positive number greater than or equal to one is less than or equal to the other number. (Contributed by AV, 29-Jun-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 / 𝐶) ≤ 𝐵))
 
Theoremge0p1rpd 9469 A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (𝐴 + 1) ∈ ℝ+)
 
Theoremrerpdivcld 9470 Closure law for division of a real by a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (𝐴 / 𝐵) ∈ ℝ)
 
Theoremltsubrpd 9471 Subtracting a positive real from another number decreases it. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (𝐴𝐵) < 𝐴)
 
Theoremltaddrpd 9472 Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑𝐴 < (𝐴 + 𝐵))
 
Theoremltaddrp2d 9473 Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑𝐴 < (𝐵 + 𝐴))
 
Theoremltmulgt11d 9474 Multiplication by a number greater than 1. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (1 < 𝐴𝐵 < (𝐵 · 𝐴)))
 
Theoremltmulgt12d 9475 Multiplication by a number greater than 1. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (1 < 𝐴𝐵 < (𝐴 · 𝐵)))
 
Theoremgt0divd 9476 Division of a positive number by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴 / 𝐵)))
 
Theoremge0divd 9477 Division of a nonnegative number by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵)))
 
Theoremrpgecld 9478 A number greater or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐵𝐴)       (𝜑𝐴 ∈ ℝ+)
 
Theoremdivge0d 9479 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → 0 ≤ (𝐴 / 𝐵))
 
Theoremltmul1d 9480 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))
 
Theoremltmul2d 9481 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵)))
 
Theoremlemul1d 9482 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → (𝐴𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
 
Theoremlemul2d 9483 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → (𝐴𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))
 
Theoremltdiv1d 9484 Division of both sides of 'less than' by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶)))
 
Theoremlediv1d 9485 Division of both sides of a less than or equal to relation by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → (𝐴𝐵 ↔ (𝐴 / 𝐶) ≤ (𝐵 / 𝐶)))
 
Theoremltmuldivd 9486 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → ((𝐴 · 𝐶) < 𝐵𝐴 < (𝐵 / 𝐶)))
 
Theoremltmuldiv2d 9487 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → ((𝐶 · 𝐴) < 𝐵𝐴 < (𝐵 / 𝐶)))
 
Theoremlemuldivd 9488 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → ((𝐴 · 𝐶) ≤ 𝐵𝐴 ≤ (𝐵 / 𝐶)))
 
Theoremlemuldiv2d 9489 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → ((𝐶 · 𝐴) ≤ 𝐵𝐴 ≤ (𝐵 / 𝐶)))
 
Theoremltdivmuld 9490 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → ((𝐴 / 𝐶) < 𝐵𝐴 < (𝐶 · 𝐵)))
 
Theoremltdivmul2d 9491 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → ((𝐴 / 𝐶) < 𝐵𝐴 < (𝐵 · 𝐶)))
 
Theoremledivmuld 9492 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → ((𝐴 / 𝐶) ≤ 𝐵𝐴 ≤ (𝐶 · 𝐵)))
 
Theoremledivmul2d 9493 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → ((𝐴 / 𝐶) ≤ 𝐵𝐴 ≤ (𝐵 · 𝐶)))
 
Theoremltmul1dd 9494 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐶))
 
Theoremltmul2dd 9495 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (𝐶 · 𝐴) < (𝐶 · 𝐵))
 
Theoremltdiv1dd 9496 Division of both sides of 'less than' by a positive number. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (𝐴 / 𝐶) < (𝐵 / 𝐶))
 
Theoremlediv1dd 9497 Division of both sides of a less than or equal to relation by a positive number. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴 / 𝐶) ≤ (𝐵 / 𝐶))
 
Theoremlediv12ad 9498 Comparison of ratio of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐴𝐵)    &   (𝜑𝐶𝐷)       (𝜑 → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶))
 
Theoremltdiv23d 9499 Swap denominator with other side of 'less than'. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → (𝐴 / 𝐵) < 𝐶)       (𝜑 → (𝐴 / 𝐶) < 𝐵)
 
Theoremlediv23d 9500 Swap denominator with other side of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → (𝐴 / 𝐵) ≤ 𝐶)       (𝜑 → (𝐴 / 𝐶) ≤ 𝐵)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13145
  Copyright terms: Public domain < Previous  Next >