ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfltpnf GIF version

Theorem mnfltpnf 9564
Description: Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
mnfltpnf -∞ < +∞

Proof of Theorem mnfltpnf
StepHypRef Expression
1 eqid 2137 . . . 4 -∞ = -∞
2 eqid 2137 . . . 4 +∞ = +∞
3 olc 700 . . . 4 ((-∞ = -∞ ∧ +∞ = +∞) → (((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)))
41, 2, 3mp2an 422 . . 3 (((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞))
54orci 720 . 2 ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ)))
6 mnfxr 7815 . . 3 -∞ ∈ ℝ*
7 pnfxr 7811 . . 3 +∞ ∈ ℝ*
8 ltxr 9555 . . 3 ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ < +∞ ↔ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ)))))
96, 7, 8mp2an 422 . 2 (-∞ < +∞ ↔ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ))))
105, 9mpbir 145 1 -∞ < +∞
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480   class class class wbr 3924  cr 7612   < cltrr 7617  +∞cpnf 7790  -∞cmnf 7791  *cxr 7792   < clt 7793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-cnex 7704
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-xp 4540  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798
This theorem is referenced by:  mnfltxr  9565  xrlttr  9574  xrltso  9575  xrlttri3  9576  nltpnft  9590  npnflt  9591  ngtmnft  9593  nmnfgt  9594  xltnegi  9611  xposdif  9658
  Copyright terms: Public domain W3C validator