Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo4 GIF version

Theorem mo4 1977
 Description: "At most one" expressed using implicit substitution. (Contributed by NM, 26-Jul-1995.)
Hypothesis
Ref Expression
mo4.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
mo4 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem mo4
StepHypRef Expression
1 nfv 1437 . 2 𝑥𝜓
2 mo4.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2mo4f 1976 1 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   ↔ wb 102  ∀wal 1257  ∃*wmo 1917 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444 This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920 This theorem is referenced by:  eu4  1978  rmo4  2757  dffun5r  4942  dffun6f  4943  fun11  4994  brprcneu  5199  dff13  5435  mpt2fun  5631  caovimo  5722  th3qlem1  6239  addnq0mo  6603  mulnq0mo  6604  addsrmo  6886  mulsrmo  6887
 Copyright terms: Public domain W3C validator