ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mob GIF version

Theorem mob 2746
Description: Equality implied by "at most one." (Contributed by NM, 18-Feb-2006.)
Hypotheses
Ref Expression
moi.1 (𝑥 = 𝐴 → (𝜑𝜓))
moi.2 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
mob (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜒,𝑥   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem mob
StepHypRef Expression
1 elex 2583 . . . . 5 (𝐵𝐷𝐵 ∈ V)
2 nfcv 2194 . . . . . . . 8 𝑥𝐴
3 nfv 1437 . . . . . . . . . 10 𝑥 𝐵 ∈ V
4 nfmo1 1928 . . . . . . . . . 10 𝑥∃*𝑥𝜑
5 nfv 1437 . . . . . . . . . 10 𝑥𝜓
63, 4, 5nf3an 1474 . . . . . . . . 9 𝑥(𝐵 ∈ V ∧ ∃*𝑥𝜑𝜓)
7 nfv 1437 . . . . . . . . 9 𝑥(𝐴 = 𝐵𝜒)
86, 7nfim 1480 . . . . . . . 8 𝑥((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒))
9 moi.1 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝜑𝜓))
1093anbi3d 1224 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜑) ↔ (𝐵 ∈ V ∧ ∃*𝑥𝜑𝜓)))
11 eqeq1 2062 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
1211bibi1d 226 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑥 = 𝐵𝜒) ↔ (𝐴 = 𝐵𝜒)))
1310, 12imbi12d 227 . . . . . . . 8 (𝑥 = 𝐴 → (((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜑) → (𝑥 = 𝐵𝜒)) ↔ ((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒))))
14 moi.2 . . . . . . . . 9 (𝑥 = 𝐵 → (𝜑𝜒))
1514mob2 2744 . . . . . . . 8 ((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜑) → (𝑥 = 𝐵𝜒))
162, 8, 13, 15vtoclgf 2629 . . . . . . 7 (𝐴𝐶 → ((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒)))
1716com12 30 . . . . . 6 ((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜓) → (𝐴𝐶 → (𝐴 = 𝐵𝜒)))
18173expib 1118 . . . . 5 (𝐵 ∈ V → ((∃*𝑥𝜑𝜓) → (𝐴𝐶 → (𝐴 = 𝐵𝜒))))
191, 18syl 14 . . . 4 (𝐵𝐷 → ((∃*𝑥𝜑𝜓) → (𝐴𝐶 → (𝐴 = 𝐵𝜒))))
2019com3r 77 . . 3 (𝐴𝐶 → (𝐵𝐷 → ((∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒))))
2120imp 119 . 2 ((𝐴𝐶𝐵𝐷) → ((∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒)))
22213impib 1113 1 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  w3a 896   = wceq 1259  wcel 1409  ∃*wmo 1917  Vcvv 2574
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576
This theorem is referenced by:  moi  2747  rmob  2878
  Copyright terms: Public domain W3C validator