ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mob2 GIF version

Theorem mob2 2781
Description: Consequence of "at most one." (Contributed by NM, 2-Jan-2015.)
Hypothesis
Ref Expression
moi2.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
mob2 ((𝐴𝐵 ∧ ∃*𝑥𝜑𝜑) → (𝑥 = 𝐴𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem mob2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp3 941 . . 3 ((𝐴𝐵 ∧ ∃*𝑥𝜑𝜑) → 𝜑)
2 moi2.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2syl5ibcom 153 . 2 ((𝐴𝐵 ∧ ∃*𝑥𝜑𝜑) → (𝑥 = 𝐴𝜓))
4 nfs1v 1858 . . . . . . . 8 𝑥[𝑦 / 𝑥]𝜑
5 sbequ12 1696 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
64, 5mo4f 2003 . . . . . . 7 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
7 sp 1442 . . . . . . 7 (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
86, 7sylbi 119 . . . . . 6 (∃*𝑥𝜑 → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
9 nfv 1462 . . . . . . . . . 10 𝑥𝜓
109, 2sbhypf 2657 . . . . . . . . 9 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
1110anbi2d 452 . . . . . . . 8 (𝑦 = 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝜑𝜓)))
12 eqeq2 2092 . . . . . . . 8 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
1311, 12imbi12d 232 . . . . . . 7 (𝑦 = 𝐴 → (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ((𝜑𝜓) → 𝑥 = 𝐴)))
1413spcgv 2694 . . . . . 6 (𝐴𝐵 → (∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ((𝜑𝜓) → 𝑥 = 𝐴)))
158, 14syl5 32 . . . . 5 (𝐴𝐵 → (∃*𝑥𝜑 → ((𝜑𝜓) → 𝑥 = 𝐴)))
1615imp 122 . . . 4 ((𝐴𝐵 ∧ ∃*𝑥𝜑) → ((𝜑𝜓) → 𝑥 = 𝐴))
1716expd 254 . . 3 ((𝐴𝐵 ∧ ∃*𝑥𝜑) → (𝜑 → (𝜓𝑥 = 𝐴)))
18173impia 1136 . 2 ((𝐴𝐵 ∧ ∃*𝑥𝜑𝜑) → (𝜓𝑥 = 𝐴))
193, 18impbid 127 1 ((𝐴𝐵 ∧ ∃*𝑥𝜑𝜑) → (𝑥 = 𝐴𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920  wal 1283   = wceq 1285  wcel 1434  [wsb 1687  ∃*wmo 1944
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612
This theorem is referenced by:  moi2  2782  mob  2783
  Copyright terms: Public domain W3C validator