ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moddvds GIF version

Theorem moddvds 11429
Description: Two ways to say 𝐴𝐵 (mod 𝑁), see also definition in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
moddvds ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝐵)))

Proof of Theorem moddvds
StepHypRef Expression
1 nnq 9393 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
21adantr 274 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝑁 ∈ ℚ)
3 nngt0 8713 . . . . . 6 (𝑁 ∈ ℕ → 0 < 𝑁)
43adantr 274 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 0 < 𝑁)
5 q0mod 10096 . . . . 5 ((𝑁 ∈ ℚ ∧ 0 < 𝑁) → (0 mod 𝑁) = 0)
62, 4, 5syl2anc 408 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (0 mod 𝑁) = 0)
76eqeq2d 2129 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴𝐵) mod 𝑁) = (0 mod 𝑁) ↔ ((𝐴𝐵) mod 𝑁) = 0))
8 zq 9386 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
98ad2antrl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐴 ∈ ℚ)
109adantr 274 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)) → 𝐴 ∈ ℚ)
11 zq 9386 . . . . . . . . 9 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
1211ad2antll 482 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐵 ∈ ℚ)
1312adantr 274 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)) → 𝐵 ∈ ℚ)
14 qnegcl 9396 . . . . . . . 8 (𝐵 ∈ ℚ → -𝐵 ∈ ℚ)
1513, 14syl 14 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)) → -𝐵 ∈ ℚ)
162adantr 274 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)) → 𝑁 ∈ ℚ)
174adantr 274 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)) → 0 < 𝑁)
18 simpr 109 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)) → (𝐴 mod 𝑁) = (𝐵 mod 𝑁))
1910, 13, 15, 16, 17, 18modqadd1 10102 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐵 + -𝐵) mod 𝑁))
2019ex 114 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐵 + -𝐵) mod 𝑁)))
21 simprl 505 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐴 ∈ ℤ)
2221zcnd 9142 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐴 ∈ ℂ)
23 simprr 506 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐵 ∈ ℤ)
2423zcnd 9142 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐵 ∈ ℂ)
2522, 24negsubd 8047 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝐴 + -𝐵) = (𝐴𝐵))
2625oveq1d 5757 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐴𝐵) mod 𝑁))
2724negidd 8031 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝐵 + -𝐵) = 0)
2827oveq1d 5757 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐵 + -𝐵) mod 𝑁) = (0 mod 𝑁))
2926, 28eqeq12d 2132 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴 + -𝐵) mod 𝑁) = ((𝐵 + -𝐵) mod 𝑁) ↔ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)))
3020, 29sylibd 148 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) → ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)))
319adantr 274 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)) → 𝐴 ∈ ℚ)
3212adantr 274 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)) → 𝐵 ∈ ℚ)
33 qsubcl 9398 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴𝐵) ∈ ℚ)
3431, 32, 33syl2anc 408 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)) → (𝐴𝐵) ∈ ℚ)
35 0z 9033 . . . . . . . 8 0 ∈ ℤ
36 zq 9386 . . . . . . . 8 (0 ∈ ℤ → 0 ∈ ℚ)
3735, 36mp1i 10 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)) → 0 ∈ ℚ)
382adantr 274 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)) → 𝑁 ∈ ℚ)
394adantr 274 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)) → 0 < 𝑁)
40 simpr 109 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)) → ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁))
4134, 37, 32, 38, 39, 40modqadd1 10102 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) ∧ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)) → (((𝐴𝐵) + 𝐵) mod 𝑁) = ((0 + 𝐵) mod 𝑁))
4241ex 114 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴𝐵) mod 𝑁) = (0 mod 𝑁) → (((𝐴𝐵) + 𝐵) mod 𝑁) = ((0 + 𝐵) mod 𝑁)))
4322, 24npcand 8045 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴𝐵) + 𝐵) = 𝐴)
4443oveq1d 5757 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴𝐵) + 𝐵) mod 𝑁) = (𝐴 mod 𝑁))
4524addid2d 7880 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (0 + 𝐵) = 𝐵)
4645oveq1d 5757 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((0 + 𝐵) mod 𝑁) = (𝐵 mod 𝑁))
4744, 46eqeq12d 2132 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((((𝐴𝐵) + 𝐵) mod 𝑁) = ((0 + 𝐵) mod 𝑁) ↔ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)))
4842, 47sylibd 148 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (((𝐴𝐵) mod 𝑁) = (0 mod 𝑁) → (𝐴 mod 𝑁) = (𝐵 mod 𝑁)))
4930, 48impbid 128 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ ((𝐴𝐵) mod 𝑁) = (0 mod 𝑁)))
50 zsubcl 9063 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
51 dvdsval3 11424 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴𝐵) ∈ ℤ) → (𝑁 ∥ (𝐴𝐵) ↔ ((𝐴𝐵) mod 𝑁) = 0))
5250, 51sylan2 284 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝑁 ∥ (𝐴𝐵) ↔ ((𝐴𝐵) mod 𝑁) = 0))
537, 49, 523bitr4d 219 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝐵)))
54533impb 1162 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 947   = wceq 1316  wcel 1465   class class class wbr 3899  (class class class)co 5742  0cc0 7588   + caddc 7591   < clt 7768  cmin 7901  -cneg 7902  cn 8688  cz 9022  cq 9379   mod cmo 10063  cdvds 11420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-po 4188  df-iso 4189  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-n0 8946  df-z 9023  df-q 9380  df-rp 9410  df-fl 10011  df-mod 10064  df-dvds 11421
This theorem is referenced by:  summodnegmod  11451  modmulconst  11452  addmodlteqALT  11484  dvdsmod  11487  congr  11708  cncongr1  11711  cncongr2  11712  crth  11827
  Copyright terms: Public domain W3C validator