ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modmulconst GIF version

Theorem modmulconst 11525
Description: Constant multiplication in a modulo operation, see theorem 5.3 in [ApostolNT] p. 108. (Contributed by AV, 21-Jul-2021.)
Assertion
Ref Expression
modmulconst (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀))))

Proof of Theorem modmulconst
StepHypRef Expression
1 nnz 9073 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
21adantl 275 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℤ)
3 zsubcl 9095 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
433adant3 1001 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐴𝐵) ∈ ℤ)
54adantr 274 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐴𝐵) ∈ ℤ)
6 nnz 9073 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ∈ ℤ)
7 nnne0 8748 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ≠ 0)
86, 7jca 304 . . . . . 6 (𝐶 ∈ ℕ → (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0))
983ad2ant3 1004 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0))
109adantr 274 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0))
11 dvdscmulr 11522 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝑀) ∥ (𝐶 · (𝐴𝐵)) ↔ 𝑀 ∥ (𝐴𝐵)))
1211bicomd 140 . . . 4 ((𝑀 ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0)) → (𝑀 ∥ (𝐴𝐵) ↔ (𝐶 · 𝑀) ∥ (𝐶 · (𝐴𝐵))))
132, 5, 10, 12syl3anc 1216 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ (𝐴𝐵) ↔ (𝐶 · 𝑀) ∥ (𝐶 · (𝐴𝐵))))
14 zcn 9059 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
15 zcn 9059 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
16 nncn 8728 . . . . . . . 8 (𝐶 ∈ ℕ → 𝐶 ∈ ℂ)
1714, 15, 163anim123i 1166 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
18 3anrot 967 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ↔ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
1917, 18sylibr 133 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
20 subdi 8147 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · (𝐴𝐵)) = ((𝐶 · 𝐴) − (𝐶 · 𝐵)))
2119, 20syl 14 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 · (𝐴𝐵)) = ((𝐶 · 𝐴) − (𝐶 · 𝐵)))
2221adantr 274 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 · (𝐴𝐵)) = ((𝐶 · 𝐴) − (𝐶 · 𝐵)))
2322breq2d 3941 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐶 · 𝑀) ∥ (𝐶 · (𝐴𝐵)) ↔ (𝐶 · 𝑀) ∥ ((𝐶 · 𝐴) − (𝐶 · 𝐵))))
2413, 23bitrd 187 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ (𝐴𝐵) ↔ (𝐶 · 𝑀) ∥ ((𝐶 · 𝐴) − (𝐶 · 𝐵))))
25 simpr 109 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
26 simp1 981 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℤ)
2726adantr 274 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝐴 ∈ ℤ)
28 simp2 982 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℤ)
2928adantr 274 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝐵 ∈ ℤ)
30 moddvds 11502 . . 3 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ 𝑀 ∥ (𝐴𝐵)))
3125, 27, 29, 30syl3anc 1216 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ 𝑀 ∥ (𝐴𝐵)))
32 simpl3 986 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝐶 ∈ ℕ)
3332, 25nnmulcld 8769 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 · 𝑀) ∈ ℕ)
3463ad2ant3 1004 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℤ)
3534, 26zmulcld 9179 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 · 𝐴) ∈ ℤ)
3635adantr 274 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 · 𝐴) ∈ ℤ)
3734, 28zmulcld 9179 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 · 𝐵) ∈ ℤ)
3837adantr 274 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 · 𝐵) ∈ ℤ)
39 moddvds 11502 . . 3 (((𝐶 · 𝑀) ∈ ℕ ∧ (𝐶 · 𝐴) ∈ ℤ ∧ (𝐶 · 𝐵) ∈ ℤ) → (((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀)) ↔ (𝐶 · 𝑀) ∥ ((𝐶 · 𝐴) − (𝐶 · 𝐵))))
4033, 36, 38, 39syl3anc 1216 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀)) ↔ (𝐶 · 𝑀) ∥ ((𝐶 · 𝐴) − (𝐶 · 𝐵))))
4124, 31, 403bitr4d 219 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wne 2308   class class class wbr 3929  (class class class)co 5774  cc 7618  0cc0 7620   · cmul 7625  cmin 7933  cn 8720  cz 9054   mod cmo 10095  cdvds 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-q 9412  df-rp 9442  df-fl 10043  df-mod 10096  df-dvds 11494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator