ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqadd1 GIF version

Theorem modqadd1 9311
Description: Addition property of the modulo operation. (Contributed by Jim Kingdon, 22-Oct-2021.)
Hypotheses
Ref Expression
modqadd1.a (𝜑𝐴 ∈ ℚ)
modqadd1.b (𝜑𝐵 ∈ ℚ)
modqadd1.c (𝜑𝐶 ∈ ℚ)
modqadd1.dq (𝜑𝐷 ∈ ℚ)
modqadd1.dgt0 (𝜑 → 0 < 𝐷)
modqadd1.ab (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
Assertion
Ref Expression
modqadd1 (𝜑 → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))

Proof of Theorem modqadd1
StepHypRef Expression
1 modqadd1.ab . 2 (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
2 modqadd1.a . . . . . . 7 (𝜑𝐴 ∈ ℚ)
3 modqadd1.dq . . . . . . 7 (𝜑𝐷 ∈ ℚ)
4 modqadd1.dgt0 . . . . . . 7 (𝜑 → 0 < 𝐷)
5 modqval 9274 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))))
62, 3, 4, 5syl3anc 1146 . . . . . 6 (𝜑 → (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))))
7 modqadd1.b . . . . . . 7 (𝜑𝐵 ∈ ℚ)
8 modqval 9274 . . . . . . 7 ((𝐵 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))
97, 3, 4, 8syl3anc 1146 . . . . . 6 (𝜑 → (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))
106, 9eqeq12d 2070 . . . . 5 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
11 oveq1 5547 . . . . 5 ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶))
1210, 11syl6bi 156 . . . 4 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶)))
13 qcn 8666 . . . . . . 7 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
142, 13syl 14 . . . . . 6 (𝜑𝐴 ∈ ℂ)
15 modqadd1.c . . . . . . 7 (𝜑𝐶 ∈ ℚ)
16 qcn 8666 . . . . . . 7 (𝐶 ∈ ℚ → 𝐶 ∈ ℂ)
1715, 16syl 14 . . . . . 6 (𝜑𝐶 ∈ ℂ)
18 qcn 8666 . . . . . . . 8 (𝐷 ∈ ℚ → 𝐷 ∈ ℂ)
193, 18syl 14 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
204gt0ne0d 7578 . . . . . . . . . 10 (𝜑𝐷 ≠ 0)
21 qdivcl 8675 . . . . . . . . . 10 ((𝐴 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 𝐷 ≠ 0) → (𝐴 / 𝐷) ∈ ℚ)
222, 3, 20, 21syl3anc 1146 . . . . . . . . 9 (𝜑 → (𝐴 / 𝐷) ∈ ℚ)
2322flqcld 9227 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 / 𝐷)) ∈ ℤ)
2423zcnd 8420 . . . . . . 7 (𝜑 → (⌊‘(𝐴 / 𝐷)) ∈ ℂ)
2519, 24mulcld 7105 . . . . . 6 (𝜑 → (𝐷 · (⌊‘(𝐴 / 𝐷))) ∈ ℂ)
2614, 17, 25addsubd 7406 . . . . 5 (𝜑 → ((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶))
27 qcn 8666 . . . . . . 7 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
287, 27syl 14 . . . . . 6 (𝜑𝐵 ∈ ℂ)
29 qdivcl 8675 . . . . . . . . . 10 ((𝐵 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 𝐷 ≠ 0) → (𝐵 / 𝐷) ∈ ℚ)
307, 3, 20, 29syl3anc 1146 . . . . . . . . 9 (𝜑 → (𝐵 / 𝐷) ∈ ℚ)
3130flqcld 9227 . . . . . . . 8 (𝜑 → (⌊‘(𝐵 / 𝐷)) ∈ ℤ)
3231zcnd 8420 . . . . . . 7 (𝜑 → (⌊‘(𝐵 / 𝐷)) ∈ ℂ)
3319, 32mulcld 7105 . . . . . 6 (𝜑 → (𝐷 · (⌊‘(𝐵 / 𝐷))) ∈ ℂ)
3428, 17, 33addsubd 7406 . . . . 5 (𝜑 → ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶))
3526, 34eqeq12d 2070 . . . 4 (𝜑 → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) ↔ ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶)))
3612, 35sylibrd 162 . . 3 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
37 oveq1 5547 . . . 4 (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷))
38 qaddcl 8667 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐶 ∈ ℚ) → (𝐴 + 𝐶) ∈ ℚ)
392, 15, 38syl2anc 397 . . . . . 6 (𝜑 → (𝐴 + 𝐶) ∈ ℚ)
40 modqcyc2 9310 . . . . . 6 ((((𝐴 + 𝐶) ∈ ℚ ∧ (⌊‘(𝐴 / 𝐷)) ∈ ℤ) ∧ (𝐷 ∈ ℚ ∧ 0 < 𝐷)) → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = ((𝐴 + 𝐶) mod 𝐷))
4139, 23, 3, 4, 40syl22anc 1147 . . . . 5 (𝜑 → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = ((𝐴 + 𝐶) mod 𝐷))
42 qaddcl 8667 . . . . . . 7 ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) → (𝐵 + 𝐶) ∈ ℚ)
437, 15, 42syl2anc 397 . . . . . 6 (𝜑 → (𝐵 + 𝐶) ∈ ℚ)
44 modqcyc2 9310 . . . . . 6 ((((𝐵 + 𝐶) ∈ ℚ ∧ (⌊‘(𝐵 / 𝐷)) ∈ ℤ) ∧ (𝐷 ∈ ℚ ∧ 0 < 𝐷)) → (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))
4543, 31, 3, 4, 44syl22anc 1147 . . . . 5 (𝜑 → (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))
4641, 45eqeq12d 2070 . . . 4 (𝜑 → ((((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷) ↔ ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)))
4737, 46syl5ib 147 . . 3 (𝜑 → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)))
4836, 47syld 44 . 2 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)))
491, 48mpd 13 1 (𝜑 → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1259  wcel 1409  wne 2220   class class class wbr 3792  cfv 4930  (class class class)co 5540  cc 6945  0cc0 6947   + caddc 6950   · cmul 6952   < clt 7119  cmin 7245   / cdiv 7725  cz 8302  cq 8651  cfl 9220   mod cmo 9272
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-mulrcl 7041  ax-addcom 7042  ax-mulcom 7043  ax-addass 7044  ax-mulass 7045  ax-distr 7046  ax-i2m1 7047  ax-1rid 7049  ax-0id 7050  ax-rnegex 7051  ax-precex 7052  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-apti 7057  ax-pre-ltadd 7058  ax-pre-mulgt0 7059  ax-pre-mulext 7060  ax-arch 7061
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-reap 7640  df-ap 7647  df-div 7726  df-inn 7991  df-n0 8240  df-z 8303  df-q 8652  df-rp 8682  df-fl 9222  df-mod 9273
This theorem is referenced by:  modqaddabs  9312  modqaddmod  9313  modqadd12d  9330  modqaddmulmod  9341  moddvds  10117
  Copyright terms: Public domain W3C validator