ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqsubdir GIF version

Theorem modqsubdir 10159
Description: Distribute the modulo operation over a subtraction. (Contributed by Jim Kingdon, 26-Oct-2021.)
Assertion
Ref Expression
modqsubdir (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶) ↔ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))))

Proof of Theorem modqsubdir
StepHypRef Expression
1 simpll 518 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐴 ∈ ℚ)
2 simprl 520 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ∈ ℚ)
3 simprr 521 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 0 < 𝐶)
41, 2, 3modqcld 10094 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 mod 𝐶) ∈ ℚ)
5 qre 9410 . . . 4 ((𝐴 mod 𝐶) ∈ ℚ → (𝐴 mod 𝐶) ∈ ℝ)
64, 5syl 14 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 mod 𝐶) ∈ ℝ)
7 simplr 519 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐵 ∈ ℚ)
87, 2, 3modqcld 10094 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐵 mod 𝐶) ∈ ℚ)
9 qre 9410 . . . 4 ((𝐵 mod 𝐶) ∈ ℚ → (𝐵 mod 𝐶) ∈ ℝ)
108, 9syl 14 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐵 mod 𝐶) ∈ ℝ)
116, 10subge0d 8290 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ↔ (𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶)))
12 qsubcl 9423 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴𝐵) ∈ ℚ)
1312adantr 274 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴𝐵) ∈ ℚ)
143gt0ne0d 8267 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ≠ 0)
15 qdivcl 9428 . . . . . . . . . 10 ((𝐴 ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) ∈ ℚ)
161, 2, 14, 15syl3anc 1216 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 / 𝐶) ∈ ℚ)
1716flqcld 10043 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐴 / 𝐶)) ∈ ℤ)
18 qdivcl 9428 . . . . . . . . . 10 ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) ∈ ℚ)
197, 2, 14, 18syl3anc 1216 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐵 / 𝐶) ∈ ℚ)
2019flqcld 10043 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐵 / 𝐶)) ∈ ℤ)
2117, 20zsubcld 9171 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))) ∈ ℤ)
22 modqcyc2 10126 . . . . . . 7 ((((𝐴𝐵) ∈ ℚ ∧ ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))) ∈ ℤ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (((𝐴𝐵) − (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))))) mod 𝐶) = ((𝐴𝐵) mod 𝐶))
2313, 21, 2, 3, 22syl22anc 1217 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (((𝐴𝐵) − (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))))) mod 𝐶) = ((𝐴𝐵) mod 𝐶))
24 qcn 9419 . . . . . . . . . 10 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
251, 24syl 14 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐴 ∈ ℂ)
26 qcn 9419 . . . . . . . . . 10 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
277, 26syl 14 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐵 ∈ ℂ)
28 zq 9411 . . . . . . . . . . . 12 ((⌊‘(𝐴 / 𝐶)) ∈ ℤ → (⌊‘(𝐴 / 𝐶)) ∈ ℚ)
2917, 28syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐴 / 𝐶)) ∈ ℚ)
30 qmulcl 9422 . . . . . . . . . . 11 ((𝐶 ∈ ℚ ∧ (⌊‘(𝐴 / 𝐶)) ∈ ℚ) → (𝐶 · (⌊‘(𝐴 / 𝐶))) ∈ ℚ)
312, 29, 30syl2anc 408 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐶 · (⌊‘(𝐴 / 𝐶))) ∈ ℚ)
32 qcn 9419 . . . . . . . . . 10 ((𝐶 · (⌊‘(𝐴 / 𝐶))) ∈ ℚ → (𝐶 · (⌊‘(𝐴 / 𝐶))) ∈ ℂ)
3331, 32syl 14 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐶 · (⌊‘(𝐴 / 𝐶))) ∈ ℂ)
34 zq 9411 . . . . . . . . . . . 12 ((⌊‘(𝐵 / 𝐶)) ∈ ℤ → (⌊‘(𝐵 / 𝐶)) ∈ ℚ)
3520, 34syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐵 / 𝐶)) ∈ ℚ)
36 qmulcl 9422 . . . . . . . . . . 11 ((𝐶 ∈ ℚ ∧ (⌊‘(𝐵 / 𝐶)) ∈ ℚ) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℚ)
372, 35, 36syl2anc 408 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℚ)
38 qcn 9419 . . . . . . . . . 10 ((𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℚ → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℂ)
3937, 38syl 14 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℂ)
4025, 27, 33, 39sub4d 8115 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴𝐵) − ((𝐶 · (⌊‘(𝐴 / 𝐶))) − (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 − (𝐶 · (⌊‘(𝐴 / 𝐶)))) − (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))))
41 qcn 9419 . . . . . . . . . . 11 (𝐶 ∈ ℚ → 𝐶 ∈ ℂ)
422, 41syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ∈ ℂ)
4317zcnd 9167 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐴 / 𝐶)) ∈ ℂ)
4420zcnd 9167 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐵 / 𝐶)) ∈ ℂ)
4542, 43, 44subdid 8169 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶)))) = ((𝐶 · (⌊‘(𝐴 / 𝐶))) − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
4645oveq2d 5783 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴𝐵) − (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))))) = ((𝐴𝐵) − ((𝐶 · (⌊‘(𝐴 / 𝐶))) − (𝐶 · (⌊‘(𝐵 / 𝐶))))))
47 modqval 10090 . . . . . . . . . 10 ((𝐴 ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 0 < 𝐶) → (𝐴 mod 𝐶) = (𝐴 − (𝐶 · (⌊‘(𝐴 / 𝐶)))))
481, 2, 3, 47syl3anc 1216 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 mod 𝐶) = (𝐴 − (𝐶 · (⌊‘(𝐴 / 𝐶)))))
49 modqval 10090 . . . . . . . . . 10 ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 0 < 𝐶) → (𝐵 mod 𝐶) = (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
507, 2, 3, 49syl3anc 1216 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐵 mod 𝐶) = (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
5148, 50oveq12d 5785 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) = ((𝐴 − (𝐶 · (⌊‘(𝐴 / 𝐶)))) − (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))))
5240, 46, 513eqtr4d 2180 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴𝐵) − (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))))) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
5352oveq1d 5782 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (((𝐴𝐵) − (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))))) mod 𝐶) = (((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) mod 𝐶))
5423, 53eqtr3d 2172 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴𝐵) mod 𝐶) = (((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) mod 𝐶))
5554adantr 274 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → ((𝐴𝐵) mod 𝐶) = (((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) mod 𝐶))
56 qsubcl 9423 . . . . . . 7 (((𝐴 mod 𝐶) ∈ ℚ ∧ (𝐵 mod 𝐶) ∈ ℚ) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ∈ ℚ)
574, 8, 56syl2anc 408 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ∈ ℚ)
5857adantr 274 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ∈ ℚ)
592adantr 274 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → 𝐶 ∈ ℚ)
60 simpr 109 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
616, 10resubcld 8136 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ∈ ℝ)
62 qre 9410 . . . . . . . 8 (𝐶 ∈ ℚ → 𝐶 ∈ ℝ)
632, 62syl 14 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ∈ ℝ)
64 modqge0 10098 . . . . . . . . 9 ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 0 < 𝐶) → 0 ≤ (𝐵 mod 𝐶))
657, 2, 3, 64syl3anc 1216 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 0 ≤ (𝐵 mod 𝐶))
666, 10subge02d 8292 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (0 ≤ (𝐵 mod 𝐶) ↔ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ≤ (𝐴 mod 𝐶)))
6765, 66mpbid 146 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ≤ (𝐴 mod 𝐶))
68 modqlt 10099 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 0 < 𝐶) → (𝐴 mod 𝐶) < 𝐶)
691, 2, 3, 68syl3anc 1216 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 mod 𝐶) < 𝐶)
7061, 6, 63, 67, 69lelttrd 7880 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) < 𝐶)
7170adantr 274 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) < 𝐶)
72 modqid 10115 . . . . 5 (((((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ∧ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) < 𝐶)) → (((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
7358, 59, 60, 71, 72syl22anc 1217 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → (((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
7455, 73eqtrd 2170 . . 3 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
75 modqge0 10098 . . . . . 6 (((𝐴𝐵) ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 0 < 𝐶) → 0 ≤ ((𝐴𝐵) mod 𝐶))
7613, 2, 3, 75syl3anc 1216 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 0 ≤ ((𝐴𝐵) mod 𝐶))
7776adantr 274 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) ∧ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → 0 ≤ ((𝐴𝐵) mod 𝐶))
78 simpr 109 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) ∧ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
7977, 78breqtrd 3949 . . 3 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) ∧ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
8074, 79impbida 585 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ↔ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))))
8111, 80bitr3d 189 1 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶) ↔ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wne 2306   class class class wbr 3924  cfv 5118  (class class class)co 5767  cc 7611  cr 7612  0cc0 7613   · cmul 7618   < clt 7793  cle 7794  cmin 7926   / cdiv 8425  cz 9047  cq 9404  cfl 10034   mod cmo 10088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-n0 8971  df-z 9048  df-q 9405  df-rp 9435  df-fl 10036  df-mod 10089
This theorem is referenced by:  modqeqmodmin  10160
  Copyright terms: Public domain W3C validator